L. Vandenberghe ECE236C Spring 2019

Homework assignment #38

Submit answers for problem 1 only. The second problem will be discussed in the discussion
sections.

1. Proximal gradient method as Bregman proximal point algorithm [O’Connor]. The fol-
lowing iteration is an extension of the proximal point algorithm (page 8.2, with ¢, = 1)
to a Bregman distance d:

Tyl = arg;nin (f(z) +d(z,z)). (1)

We apply this to a cost function f(z) = g(z)+h(x), where g and h are convex, and g is
differentiable with a Lipschitz continuous gradient. As we have seen in lecture 1 (page
1.17), this means that the function

1
8(r) = oa"x — glx)
is convex for 0 < t < 1/L, if L is the Lipschitz constant for the Euclidean norm.

Find the Bregman distance d generated by this kernel ¢. Show that the proximal point
iteration (1) with this distance reduces to the proximal gradient iteration

Tpe1 = proxy, (xp — tVg(xy)).

2. Exponential method of multipliers. We consider a convex problem with m linear in-
equality constraints, and the dual problem:

Primal:  minimize f(z) Dual: maximize —bTz— f*(—ATz2)
subject to Az <b subject to z >~ 0.

The dual variable z is an m-vector. In lecture 8 we interpreted the augmented La-
grangian method as the proximal point method applied to the dual problem. Here we
work out what happens if we replace the squared Euclidean distance in the proximal
point method with the relative entropy

d(u,v) = i(“z log(u; /v;) — u; + v;).

=1

The Bregman proximal point iteration for the dual problem is
1
241 = argmin (bTu + (= ATu) + t—d(u, zk)>
u k

1



where ¢, is a positive step size. Show that this is equivalent to the following iteration:

1 m
& = argmin (f(z)+ . 3 Zk7ietk(a?$—bi))
* k=1

tk(afi—bi)
)

2ht1i =  Rki€ 1=1,...,m.

Here a! is the ith row of A, and 2k, 1s the ¢th component of the m-vector z.



