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Primal-Dual Decomposition by Operator Splitting and Applications to Image
Deblurring∗
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Abstract. We present primal-dual decomposition algorithms for convex optimization problems with cost func-
tions f(x) + g(Ax), where f and g have inexpensive proximal operators and A can be decomposed
as a sum of two structured matrices. The methods are based on the Douglas–Rachford splitting
algorithm applied to various splittings of the primal-dual optimality conditions. We discuss applica-
tions to image deblurring problems with nonquadratic data fidelity terms, different types of convex
regularization, and simple convex constraints. In these applications, the primal-dual splitting ap-
proach allows us to handle general boundary conditions for the blurring operator. Numerical results
indicate that the primal-dual splitting methods compare favorably with the alternating direction
method of multipliers, the Douglas–Rachford algorithm applied to a reformulated primal problem,
and the Chambolle–Pock primal-dual algorithm.
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1. Introduction. We discuss primal-dual splitting methods for convex optimization prob-
lems of the form

(1) minimize f(x) + g(Ax),

where f and g are closed convex functions with inexpensive proximal operators and A is a
structured matrix. Specifically, we distinguish two types of matrix structure. In the simplest
case, the structure in A makes it possible to solve equations with a coefficient matrix I+λATA,
where λ > 0, efficiently. In the second and more general case, A can be decomposed as a sum
A = B+C of two structured matrices, with the same meaning of “structure”: linear equations
with coefficients I + λBTB and I + λCTC can be solved efficiently. These assumptions
are motivated by applications in image processing. A variety of image deblurring problems
can be formulated as large convex optimization problems of the form (1), with f and g
simple convex penalty functions or indicator functions of simple convex sets. The matrix
A represents the blurring operation and the linear transformations used in regularization
terms (see section 4). The first of the two types of structure mentioned above arises when
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periodic boundary conditions are used. In this case ATA can be diagonalized by multiplication
with DFT matrices, so equations with coefficient matrix I + λATA are solved efficiently via
fast Fourier transforms. The second type of structure arises when more realistic boundary
conditions (for example, replicate boundary conditions) are used. In the sum A = B +C the
first term then represents the model assuming periodic boundary conditions; the second term
is a sparse term added to correct for the nonperiodic boundary conditions. Linear equations
with coefficients I+λBTB and I+λCTC can therefore be solved efficiently via the fast Fourier
transform and sparse matrix factorization methods, respectively. However, these techniques
are not easily combined in an efficient method for inverting I + λATA.

The algorithms we propose use the Douglas–Rachford splitting method applied to systems
of primal-dual optimality conditions. This primal-dual approach is interesting for several
reasons. In contrast to purely primal or dual applications of the Douglas–Rachford method
(such as the alternating direction method of multipliers (ADMM)), it does not require a
reformulation of the problem and the introduction of a potentially large number of auxiliary
variables or constraints. An advantage over forward-backward splitting algorithms or semi-
implicit primal-dual methods (such as the Chambolle–Pock algorithm) is that the selection of
suitable step sizes is easier and is not limited by the norms of the linear operators. We test the
performance of the primal-dual splitting method on a set of image deblurring examples. In
each experiment the primal-dual method is compared with three other methods: ADMM, the
Douglas–Rachford method applied to a reformulated primal problem, and the Chambolle–Pock
method. The results indicate that the convergence of the primal-dual approach is comparable
to or better than the other methods, although all perform well with properly chosen algorithm
parameters.

The paper is organized as follows. In section 2 we present some background on monotone
operators and the Douglas–Rachford splitting method. In section 3 we derive several primal-
dual splitting strategies for the optimality conditions of (1), under the different assumptions on
the structure in A. In the second half of the paper the results are applied to image deblurring
problems with various types of convex regularization and constraints. In section 4 we first
describe the image deblurring problem and formulate it as a convex optimization problem of
the form (1). We then present five examples. In section 5 the primal-dual splitting method is
applied to constrained total variation (TV) deblurring problems with a nonquadratic fidelity
term. In section 6 we discuss image restoration problems with a tight frame regularization. In
section 7 we consider an application to image deblurring with a spatially varying, piecewise-
constant blurring operator. The paper concludes with a summary of the main points in
section 8.

2. Douglas–Rachford splitting algorithm. In this section we provide a brief review of
monotone operators and the Douglas–Rachford splitting algorithm. More details can be found
in [17, 1, 3, 39].

2.1. Monotone operators and resolvents. A multivalued or set-valued operator F :
R
n → R

n maps points x ∈ R
n to sets F(x) ⊂ R

n. The domain of the operator is domF =
{x | F(x) �= ∅}, and its graph is the set {(x, y) | x ∈ domF , y ∈ F(x)}. The operator is
monotone if

(y − ŷ)T (x− x̂) ≥ 0 ∀x, x̂, y ∈ F(x), ŷ ∈ F(x̂).
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A monotone operator is maximal monotone if its graph is not a strict subset of the graph of
another monotone operator.

The operator (I + λF)−1, where λ > 0, is called the resolvent of the operator F . A
fundamental result states that if F is maximal monotone, then (I + λF)−1(x̂) exists and is
unique for all x̂ ∈ R

n [4, Proposition 2.2]. The value x = (I + λF)−1(x̂) of the resolvent is
the unique solution of the monotone inclusion

(2) x̂ ∈ x+ λF(x).

The operators we will encounter in this paper are combinations of two elementary types of
maximal monotone operators. The first is the subdifferential ∂f of a closed convex function
f with nonempty domain. The second type is a skew-symmetric linear operator of the form

(3) F(x, z) =

[
0 CT

−C 0

] [
x
z

]
.

We now discuss the resolvents of these two types of operators in more detail.
Proximal operator. If F = ∂f , with f a closed convex function, the resolvent is also called

the proximal operator or prox-operator of f and written proxλf = (I + λ∂f)−1. The prox-
operator proxλf maps x to the unique solution of the optimization problem

(4) minimize f(u) +
1

2λ
‖u− x‖2

with variable u. (Throughout the paper ‖ · ‖ denotes the Euclidean norm.) For example,
the prox-operator of the indicator function of a nonempty closed convex set is the Euclidean
projection on the set.

The proximal operators of a function f and its conjugate f∗ are related by the formula

(5) x = proxλf (x) + λproxλ−1f∗(x/λ) = proxλf (x) + proxf∗λ(x).

Here, f∗λ denotes the right scalar multiplication of f∗ with λ, defined as (f∗λ)(x) = λf∗(x/λ)
[40, page 35]. It is easily verified that (f∗λ) = (λf)∗ and proxf∗λ(x) = λproxλ−1f∗(x/λ).

The decomposition (5) is known as the Moreau decomposition [35] and can be used to
compute the proximal operator of a function from the proximal operator of its conjugate. For
example, if f is a norm, then its conjugate f∗(y) = δB(y) is the indicator function of the unit
ball for the dual norm. The proximal operator of f can therefore be expressed in terms of the
Euclidean projection PB on B:

(6) proxλf (x) = x− λPB(x/λ) = x− PλB(x).

For f(x) = ‖x‖1, this is the familiar soft-thresholding operation

proxλf (x)k =

⎧⎨
⎩

xk − λ, xk > λ,
0, −λ ≤ xk ≤ λ,
xk + λ, xk ≤ −λ.
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We will also encounter the following pair of dual norms: for (x, y) ∈ R
n × R

n,

(7) ‖(x, y)‖iso =

n∑
k=1

(x2k + y2k)
1/2, ‖(x, y)‖iso∗ = max

k=1,...,n
(x2k + y2k)

1/2.

(The subscript refers to the use of this norm to express isotropic two-dimensional (2D) TV;
see section 4.) Here, the dual norm ball is a product of n 2D Euclidean norm balls. Using (6)
the prox-operator (u, v) = proxλf (x, y) of f(x, y) = ‖(x, y)‖iso can be computed as (uk, vk) =
αk(xk, yk) for k = 1, . . . , n with

αk = 1− λ

(x2k + y2k)
1/2

if (x2k + y2k)
1/2 > λ, αk = 0 otherwise.

We refer the reader to [14, 12, 39] for extensive overviews of the calculus of proximal
operators. Here, we mention one more property that will be useful later. In general, there is
no simple formula for the prox-operator of f(x) = g(Ax + b), given the prox-operator of g.
However, it can be shown that if AAT = αI, with α > 0, then

(8) proxf (x) =
1

α

(
(αI −ATA)x+AT (proxαg(Ax+ b)− b)

)
.

Skew-symmetric linear operators. The resolvent of a monotone (i.e., positive semidefinite)
linear operator F(x) = Ax is the matrix inverse (I + λA)−1. We note the following useful
expressions for the resolvent of the skew-symmetric linear operator (3):[

I λCT

−λC I

]−1

=

[
0 0
0 I

]
+

[
I
λC

]
(I + λ2CTC)−1

[
I

−λC

]T
(9)

=

[
I 0
0 0

]
+

[ −λCT

I

]
(I + λ2CCT )−1

[
λCT

I

]T
.(10)

This can be given a regularized least-squares interpretation. Let (x, z) be the value of the
resolvent of F : [

x
z

]
=

[
I λCT

−λC I

]−1 [
x̂
ẑ

]
.

Then, from (9), we see that z = ẑ + λCx and x is the solution of the least-squares problem

minimize ‖λCx+ ẑ‖2 + ‖x− x̂‖2.
Alternatively, from the second expression, x = x̂− λCT z and z is the solution of

minimize ‖λCT z − x̂‖2 + ‖z − ẑ‖2.
2.2. Douglas–Rachford splitting. The problem of finding a zero of a monotone operator

F , i.e., solving 0 ∈ F(x), is called a monotone inclusion problem. It is easily seen, for example,
from (2), that the zeros of a maximal monotone operator F are the fixed points of the resolvent
of F . The fixed point iteration

xk = (I + tF)−1xk−1, k = 1, 2, . . . ,
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is called the proximal point algorithm for solving the inclusion problem 0 ∈ F(x) [42]. The
proximal point algorithm converges under weak conditions (namely, F−1(0) �= ∅ and maximal
monotonicity of F ; see, for example, [17, Theorem 3]) but is useful in practice only when the
resolvent evaluations are inexpensive. Often this is not the case, and one has to resort to
algorithms based on operator splitting. A splitting algorithm decomposes the operator F as
a sum F = A+ B of two maximal monotone operators and requires only the resolvents of A
or B or both.

A simple algorithm for solving 0 ∈ A(x) + B(x) is the Douglas–Rachford algorithm [33,
20, 17, 11]. The algorithm can be written in a number of equivalent forms, including

xk = (I + tA)−1(zk−1),(11)

yk = (I + tB)−1(2xk − zk−1),(12)

zk = zk−1 + ρ(yk − xk).(13)

There are two algorithm parameters: a positive step size t and a relaxation parameter ρ ∈
(0, 2). It can be shown that if A+B has a zero, then zk converges to a limit of the form x+ tv,
with 0 ∈ A(x)+B(x) and v ∈ A(x)∩ (−B(x)). Therefore, xk = (I+ tA)−1(zk−1) converges to
a solution x [17]. Note that if B is linear, then the vector rk = (1/t)(I + tB)(xk − yk) satisfies

rk =
1

t
((I + tB)(xk)− 2xk + zk−1)

= B(xk) + 1

t
(zk−1 − xk)

∈ B(xk) +A(xk)

and rk → 0 because xk − yk → 0. We can therefore use a stopping criterion of the form
‖rk‖ ≤ ε. The Douglas–Rachford method is useful if the resolvents of A and B are inexpensive,
compared to the resolvent of the sum A+ B.

2.3. Alternating minimization. The Douglas–Rachford splitting method can be used to
minimize a sum f(x) + g(x) of two convex functions by taking A = ∂f and B = ∂g. In this
case, the resolvents in the algorithm (11)–(13) are prox-operators, (I+tA)−1 = proxtf and (I+
tB)−1 = proxtg, and the method can be viewed as alternating between the two minimization
problems that define these prox-operators. Two well-known algorithms, Spingarn’s method
of partial inverses [45, 46] and the ADMM [22, 21], can be interpreted as applications of this
idea.

Spingarn’s method of partial inverses [45, 46] is a method for minimizing a convex function
f over a subspace V:

minimize f(x)
subject to x ∈ V.

Eckstein and Bertsekas [17] have shown that the method is equivalent to the Douglas–Rachford
method for minimizing f(x) + δV(x), where δV is the indicator function of V. Each iteration
in the algorithm requires an evaluation of the prox-operator of f and a Euclidean projection
on the subspace V.
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The ADMM [22, 21] is a dual decomposition method for problems of the form

minimize f(x) + g(y)
subject to Ax+By = c.

The method is also known in image processing as the split Bregman method [23]. As shown
in [20, 17], the algorithm can be interpreted as the Douglas–Rachford method applied to the
dual problem

maximize cT z − f∗(AT z)− g∗(BT z),

with the dual objective split as a sum of two concave functions cT z− f∗(AT z) and −g∗(BT z).
After a series of simplifications, the Douglas–Rachford iteration (with ρ = 1) can be written
as

xk = argmin
x

L(x, yk−1, zk−1),

yk = argmin
y

L(xk, y, zk−1),(14)

zk = zk−1 + t(Axk +Byk − c),(15)

where L is the augmented Lagrangian

L(x, y, z) = f(x) + g(y) + zT (Ax+By − c) +
t

2
‖Ax+By − c‖2.

To improve convergence one can modify the basic ADMM algorithm to include overrelaxation
[17, 3]. In the overrelaxed version of ADMM, we replace the expression Axk in (14) and (15)
with ρAxk − (1 − ρ)(Byk−1 − c), where ρ ∈ (0, 2) [3, page 21]. For more details on ADMM
we refer the reader to the recent surveys [3, 16].

3. Primal-dual splitting strategies. We now apply the Douglas–Rachford splitting method
to develop decomposition algorithms for the optimization problem (1). This problem format
is widely used as a standard form in the literature on multiplier and splitting methods (see, for
example, [21, 20]). Its popularity derives from the fact that large-scale problems in practical
applications can often be expressed in this form with relatively simple choices for f , g, and A.

Note that there is flexibility in the choice of g and A. Replacing the problem with

(16) minimize f(x) + g̃(Ãx),

where Ã = βA and g̃(y) = g(y/β), does not change the optimal solution x or the optimal
value of the problem. This observation will allow us to introduce an additional algorithm
parameter that can be adjusted to improve convergence.

3.1. Optimality conditions. The optimality conditions for (1) can be written as

(17) 0 ∈

⎡
⎢⎢⎣

0 0 AT I
0 0 −I 0

−A I 0 0
−I 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
∂g(y)
0

∂f∗(w)

⎤
⎥⎥⎦ .
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(The second term on the right denotes the set {0} × ∂g(y) × {0} × ∂f∗(w).) The variable y
is an auxiliary variable in the reformulated primal problem

(18)
minimize f(x) + g(y)
subject to Ax− y = 0.

The variable z is the dual multiplier for the constraint Ax = y. The variable w is a variable
in the dual problem, written as

maximize −f∗(w)− g∗(z)
subject to AT z + w = 0.

Several equivalent reduced forms of the optimality conditions can be obtained by eliminating
y (using the relation (∂g)−1 = ∂g∗ between the subdifferential of a function and its conjugate),
by eliminating w (using (∂f∗)−1 = ∂f), or by eliminating y and w. The first two of these
options lead to 3× 3 block systems

0 ∈
⎡
⎣ 0 AT I

−A 0 0
−I 0 0

⎤
⎦
⎡
⎣ x

z
w

⎤
⎦+

⎡
⎣ 0

∂g∗(z)
∂f∗(w)

⎤
⎦ ,(19)

0 ∈
⎡
⎣ 0 0 AT

0 0 −I
−A I 0

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦+

⎡
⎣ ∂f(x)

∂g(y)
0

⎤
⎦ .(20)

Eliminating y and w results in a 2× 2 system

(21) 0 ∈
[

0 AT

−A 0

] [
x
z

]
+

[
∂f(x)
∂g∗(z)

]
.

3.2. Simple splitting. The most straightforward primal-dual splitting approach is to write
the right-hand side of the 2× 2 system (21) as a sum of the two monotone operators

A(x, z) =

[
∂f(x)
∂g∗(z)

]
, B(x, z) =

[
0 AT

−A 0

] [
x
z

]
.

The resolvents of the two operators were given in section 2.1. The value (x, z) = (I +
tA)−1(x̂, ẑ) of the resolvent of A is given by

x = proxtf (x̂), z = proxtg∗(ẑ).

Using the Moreau decomposition the second proximal operator can be written in an alternate
form as

z = ẑ − tproxt−1g(ẑ/t) = ẑ − proxgt(ẑ)

(where gt denotes right scalar multiplication of g). The resolvent of B is a linear mapping

(I + tB)−1 =

[
I tAT

−tA I

]−1

=

[
0 0
0 I

]
+

[
I
tA

]
(I + t2ATA)−1

[
I

−tA

]T
.
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An iteration of the Douglas–Rachford algorithm applied to A+ B is therefore as follows:

xk = proxtf (p
k−1),(22)

zk = proxtg∗(q
k−1),(23) [

uk

vk

]
=

[
I tAT

−tA I

]−1 [
2xk − pk−1

2zk − qk−1

]
,(24)

pk = pk−1 + ρ(uk − xk),(25)

qk = qk−1 + ρ(vk − zk).(26)

The simple splitting strategy is useful when the prox-operators of f and g are inexpensive,
and the structure in A allows us to solve linear equations with coefficient I+t2ATA efficiently.

It is interesting to work out the differences when the same method is applied to the scaled
problem (16), i.e., when g is replaced with g̃(y) = g(y/β) and A with Ã = βA. After a
few simplifications in notation, the Douglas–Rachford iteration for the scaled problem can be
written in terms of the original g and A as follows:

xk = proxtf (p
k−1),

z̃k = proxsg∗(q̃
k−1),[

uk

ṽk

]
=

[
I tAT

−sA I

]−1 [
2xk − pk−1

2z̃k − q̃k−1

]
,

pk = pk−1 + ρ(uk − xk),

q̃k = q̃k−1 + ρ(ṽk − z̃k).

The parameter s is given by s = β2t and can be interpreted as a dual step size, which can be
chosen arbitrarily and independently of the (primal) step size t.

Primal Douglas–Rachford splitting (Spingarn’s method). The type of structure exploited in
the primal-dual “simple splitting” method is also easily handled by the Douglas–Rachford
method applied to the primal or the dual problem. In the primal application, we approach
the reformulated problem (18) as one of minimizing a separable function f(x) + g(y) over
a subspace V = {(x, y) | y = Ax}. The primal Douglas–Rachford method (or Spingarn’s
method) applied to this problem therefore involves evaluations of the prox-operator of f(x)+
g(y), i.e., the prox-operators of f and g, and Euclidean projection on V. The projection (x, y)
of a vector (x̂, ŷ) on V can be expressed as

x = (I +ATA)−1(x̂+AT ŷ), y = Ax.

The steps in the primal Douglas–Rachford method are therefore very similar (but not equiv-
alent) to (22)–(26). In particular, the complexity per iteration is the same.

Dual Douglas–Rachford splitting (ADMM). In the dual application of the Douglas–Rachford
method, better known as ADMM, one first reformulates the problem by introducing a “dummy”
variable u and adding a constraint u = x:

(27)
minimize f(u) + g(y)

subject to

[
I
A

]
x−

[
I 0
0 I

] [
u
y

]
= 0.
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The augmented Lagrangian of this problem is

f(u) + g(y) + wT (x− u) + zT (Ax− y) +
t

2

(‖x− u‖2 + ‖Ax− y‖2) .
In ADMM, one alternates between minimization of the augmented Lagrangian over x and
over (u, y). Minimization over x is a least-squares problem with Hessian matrix I + ATA.
Minimization over u, y requires evaluations of the prox-operators of f and g. One iteration
can be written as follows:

xk = (I +ATA)−1

(
uk−1 +AT yk−1 − 1

t
(wk−1 +AT zk−1)

)
,

uk = proxt−1f (x
k + wk−1/t),

yk = proxt−1g(Ax
k + zk−1/t),

wk = wk−1 + t(xk − uk),

zk = zk−1 + t(Axk − yk).

As can be seen, the per-iteration complexity is the same as in the primal-dual and primal
methods. One difference is that ADMM requires the introduction of an additional variable
u. If the residual in the equality constraint x = u is slow to decrease to zero, this can be
expected to impact the convergence of x. We will return to this issue in section 3.5.

Chambolle–Pock method. Another interesting method for (1) is the Chambolle–Pock algo-
rithm [6]. One iteration of the Chambolle–Pock method consists of the following steps:

xk = proxtf (x
k−1 − tAT zk−1),

zk = proxtg∗(z
k−1 + tA(2xk − xk−1)).

This algorithm has the important advantage that it requires not the solution of linear equations
but only multiplications with A and AT . However, convergence of the algorithm depends on
the step size t, which must be chosen in (0, 1/‖A‖), where ‖A‖ is the maximum singular value
of A. As shown in [6], the method can be interpreted as a preconditioned ADMM. When one
of the functions f or g∗ is strongly convex, an accelerated version of Chambolle–Pock can be
used. Since the strong convexity assumption does not hold for the applications studied in this
paper, we omit the details.

Different primal and dual step sizes t and s can be used in the Chambolle–Pock method.
With different step sizes the iteration is

xk = proxtf (x
k−1 − tAT zk−1),

zk = proxsg∗(z
k−1 + sA(2xk − xk−1)).

Convergence is guaranteed if
√
st < 1/‖A‖. This variation of the Chambolle–Pock method

can also be interpreted as the basic version of the method (with a single step size t) applied
to the scaled problem (16). The dual step size s and the scale factor β are related by s = β2t.
As a further improvement, one can apply overrelaxation (see [15] for details). The iteration
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for the overrelaxed version is

x̄k = proxtf (x
k−1 − tAT zk−1),

z̄k = proxsg∗(z
k−1 + sA(2x̄k − xk−1)),

(xk, zk) = ρ(x̄k, z̄k) + (1− ρ)(xk−1, zk−1),

where ρ ∈ (0, 2).

3.3. Mixed splitting. We now consider problem (1) under weaker assumptions on the
problem structure. As before, we assume that f and g have inexpensive prox-operators. In
addition we assume that A can be decomposed as A = B+C, whereB and C have the property
that equations with coefficients I + λBTB and I + λCTC, with λ > 0, are easy to solve (but
not necessarily equations with coefficient I+λATA). We apply the Douglas–Rachford method
to the primal-dual optimality condition (17), with the right-hand side decomposed as the sum
of two monotone operators

A(x, y, z, w) =

⎡
⎢⎢⎣

0 0 BT 0
0 0 0 0

−B 0 0 0
0 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
∂g(y)
0

∂f∗(w)

⎤
⎥⎥⎦ ,

B(x, y, z, w) =

⎡
⎢⎢⎣

0 0 CT I
0 0 −I 0

−C I 0 0
−I 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦ .

The resolvents of A and B can be evaluated as follows. The value (x, y, z, w) = (I +
tA)−1(x̂, ŷ, ẑ, ŵ) of the resolvent of A is the solution of the inclusion problem

⎡
⎢⎢⎣

x̂
ŷ
ẑ
ŵ

⎤
⎥⎥⎦ ∈

⎡
⎢⎢⎣

I 0 tBT 0
0 I 0 0

−tB 0 I 0
0 0 0 I

⎤
⎥⎥⎦
⎡
⎢⎢⎣

x
y
z
w

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

0
∂g(y)
0

∂f∗(w)

⎤
⎥⎥⎦ .

The computation of y, w, and (x, z) can be separated. The solution for y and w is

y = proxtg(ŷ), w = proxtf∗(ŵ).

The solution x, z follows from

[
x
z

]
=

[
I tBT

−tB I

]−1 [
x̂
ŷ

]
=

[
0
ŷ

]
+

[
I
tB

]
(I + t2BTB)−1(x̂− tBŷ)



1734 DANIEL O’CONNOR AND LIEVEN VANDENBERGHE

(using the expression (9)). The resolvent of B is a linear operator. It can be verified that

(I + tB)−1 =

⎡
⎢⎢⎣

0 0 0 0
0 1

1+t2
I t

1+t2
I 0

0 − t
1+t2

I 1
1+t2

I 0

0 0 0 I

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

I
t2

1+t2
C

t
1+t2

C

tI

⎤
⎥⎥⎦
(
(1 + t2)I +

t2

1 + t2
CTC

)−1

⎡
⎢⎢⎣

I
t2

1+t2
C

− t
1+t2

C

−tI

⎤
⎥⎥⎦
T

.

From these expressions, we see that the resolvents of A and B require proximal operators of
f and g, and linear equations with coefficients of the form I + λBTB and I + λCTC. These
operations are inexpensive, under our assumptions on the problem structure, and therefore
each iteration of the Douglas–Rachford method is relatively cheap.

Primal Douglas–Rachford splitting (Spingarn’s method). As one of the referees who reviewed
this paper pointed out, the additive structure in A = B + C can be handled in the primal
Douglas–Rachford method, at the cost of doubling the number of variables, via the reformu-
lation

(28)
minimize f(x1) + g(y1 + y2) + δ(x1 − x2)
subject to Bx1 − y1 = 0,

Cx2 − y2 = 0,

where δ is the indicator function of {0}. The variables in the reformulated problem are x1,
x2, y1, y2. The cost function and its proximal operator are separable in two sets of variables
(x1, x2) and (y1, y2). The proximal operator of f(x1) + δ(x1 − x2), as a function of x1 and
x2, reduces to an evaluation of the prox-operator of f . The prox-operator of g(y1 + y2)
as a function of y1 and y2 can be related to the prox-operator of g via the formula (8). The
Euclidean projection (x1, x2, y1, y2) of (x̂1, x̂2, ŷ1, ŷ2) on the subspace defined by the constraints
is given by

x1 = (I +BTB)−1(x̂1 +BT ŷ1), x2 = (I + CTC)−1(x̂2 + CT ŷ2),

and y1 = Bx1, y2 = Cx2.
Dual Douglas–Rachford splitting (ADMM). A similar reformulation, with an extra dummy

variable u, brings the problem into a form amenable to ADMM:

minimize f(u) + g(y1 + y2)

subject to

⎡
⎢⎢⎣

I 0
0 I
B 0
0 C

⎤
⎥⎥⎦
[
x1
x2

]
−

⎡
⎢⎢⎣

I 0 0
I 0 0
0 I 0
0 0 I

⎤
⎥⎥⎦
⎡
⎣ u

y1
y2

⎤
⎦ = 0.

One iteration of ADMM involves an alternating minimization of the augmented Lagrangian
over (x1, x2), and (u, y1, y2). This requires evaluations of the prox-operators of f and g and
the solution of least-squares problems with Hessian matrices I +BTB and I + CTC.
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Chambolle–Pock method. The Chambolle–Pock method described in section 3.2 involves
only multiplications with A and AT and therefore applies without modification when A can
be decomposed as A = B + C with structured B and C.

3.4. Mixed splitting with partially quadratic functions. The mixed splitting strategy
can be simplified if f or g is a simple quadratic function, or a separable function that includes
quadratic terms. We illustrate this with two examples.

Quadratic f . Suppose f in (1) is quadratic, of the form f(x) = (μ/2)xT x+aTx with μ ≥ 0.
In that case we can start from the optimality conditions in the simpler 3× 3 form (20). Since
∂f(x) = {μx+ a}, we can use the splitting

A(x, y, z) =

⎡
⎣ μI 0 BT

0 0 0
−B 0 0

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦+

⎡
⎣ a

∂g(y)
0

⎤
⎦ ,

B(x, y, z) =
⎡
⎣ 0 0 CT

0 0 −I
−C I 0

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ .

The resolvent of A maps (x̂, ŷ, ẑ) to the solution (x, y, z) of the inclusion⎡
⎣ x̂

ŷ
ẑ

⎤
⎦ ∈

⎡
⎣ (1 + μt)I 0 tBT

0 I 0
−tB 0 I

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦+ t

⎡
⎣ a

∂g(y)
0

⎤
⎦ .

The solution is y = proxtg(ŷ) and[
x
z

]
=

[
(1 + μt)I tBT

−tB I

]−1 [
x̂− ta

ẑ

]

=

([
0 0
0 I

]
+

[
I
tB

] (
(1 + μt)I + t2BTB

)−1
[

I
−tB

]T)[
x̂− ta

ẑ

]
.

The operator B is linear so its resolvent is a matrix inverse:

(I + tB)−1 =
1

1 + t2

⎡
⎣ 0 0 0

0 I tI
0 −tI I

⎤
⎦

+

⎡
⎢⎣ I

t2

1+t2C
t

1+t2
C

⎤
⎥⎦
(
I +

t2

1 + t2
CTC

)−1

⎡
⎢⎣ I

t2

1+t2C

− t
1+t2

C

⎤
⎥⎦
T

.

The Douglas–Rachford method applied to A + B is therefore of interest under the same
assumptions as in the general mixed splitting case of section 3.3: the function g has an
inexpensive proximal operator, and the matrices B and C possess structures that allow us
to solve linear equations with coefficients of the form I + λBTB and I + λCTC quickly.
However, since the number of variables in the 3× 3 system (20) is smaller, one can expect the
Douglas–Rachford method to converge faster than for the general mixed splitting described
in section 3.3.
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Quadratic g. A similar simplification is possible when g is quadratic, of the form g(y) =
‖y − a‖2/(2μ) for μ > 0. In this case we start from the optimality conditions (19) and note
that g∗(z) = (μ/2)zT z + aT z and ∂g∗(z) = {μz + a}. We choose the splitting

A(x, z, w) =

⎡
⎣ 0 BT 0

−B μI 0
0 0 0

⎤
⎦
⎡
⎣ x

z
w

⎤
⎦+

⎡
⎣ 0

a
∂f∗(w)

⎤
⎦ ,

B(x, z, w) =
⎡
⎣ 0 CT I

−C 0 0
−I 0 0

⎤
⎦
⎡
⎣ x

z
w

⎤
⎦ .

The resolvent of A maps (x̂, ẑ, ŵ) to the solution of⎡
⎣ x̂

ẑ
ŵ

⎤
⎦ ∈

⎡
⎣ I tBT 0

−tB (1 + μt)I 0
0 0 I

⎤
⎦
⎡
⎣ x

z
w

⎤
⎦+ t

⎡
⎣ 0

a
∂f∗(w)

⎤
⎦ .

The solution is w = proxtf∗(ŵ) and

[
x
z

]
=

[
I tBT

−tB (1 + μt)I

]−1 [
x̂

ẑ − ta

]

=

(
1

1 + μt

[
0 0
0 I

]
+

[
I
t

1+μtB

](
I +

t2

1 + μt
BTB

)−1 [
I

− t
1+μtB

]T)[
x̂

ẑ − ta

]
.

The resolvent of B is

(I + tB)−1 =

⎡
⎣ 0 0 0

0 I 0
0 0 I

⎤
⎦+

⎡
⎣ I

tC
tI

⎤
⎦((1 + t2)I + t2CTC

)−1

⎡
⎣ I

−tC
−tI

⎤
⎦
T

.

Evaluating the two resolvents requires an evaluation of the proximal operator of f ∗, a linear
equation with coefficient of the form I + λBTB, and a linear equation I + λCTC.

Partially quadratic functions. More generally, one can simplify the general mixed splitting
method whenever f is separable, of the form f(x1, x2) = f1(x1) + f2(x2) with f1 a simple
quadratic term, or g is separable, g(y1, y2) = g1(y1) + g2(y2) with g1 quadratic. The details
are straightforward, and the idea will be illustrated with an example in section 6.2.

3.5. Example. The main advantage of the primal-dual splitting method is that it ex-
ploits the problem structure without introducing extra variables and constraints. This can
be expected to benefit the speed of convergence and accuracy attained. The primal and dual
Douglas–Rachford methods, on the other hand, have the same complexity per iteration as
the primal-dual method, but only after a reformulation of the problem which requires extra
variables and constraints. We also note that the increase in problem dimensions is greater
in the dual than in the primal approach. Unfortunately a theoretical analysis of this effect
is lacking, and it is not clear how important it is in practice. To conclude this section we
therefore give a small experiment that illustrates the difference.
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Figure 1. Relative error versus iteration number for the experiment in section 3.5.

We compare the mixed splitting approaches of section 3.3 on the test problem

minimize ‖x‖+ γ‖(B + C)x− b‖1
with n = 500 variables and square matrices B, C. This problem has the form (1) with
f(x) = ‖x‖ and g(y) = γ‖y − b‖1, so the algorithms of section 3.3 can be applied. The
problem data are generated randomly, with the components of A, B, b drawn independently
from a standard normal distribution, C = A − B, and γ = 1/100. In Figure 1 we compare
the convergence of the primal-dual mixed splitting method, the primal Douglas–Rachford
method, and ADMM (dual Douglas–Rachford method). The relative error ‖xk − x�‖/‖x�‖ is
with respect to the solution x� computed using CVX [25, 24]. For each method, the three
algorithm parameters (primal and dual step sizes and overrelaxation parameter) were tuned
by trial and error to give fastest convergence. As can be seen, the primal-dual splitting method
shows a clear advantage on this problem class. We also note that ADMM is slightly slower
than the primal Douglas–Rachford method, which is consistent with the intuition that having
fewer auxiliary variables and constraints is better.

4. Image deblurring by convex optimization. In the second half of the paper we apply
the primal-dual splitting methods to image deblurring. We first discuss the blurring model
and express the deblurring problem in a general optimization problem of the form (1). Let
b be a vector containing the pixel intensities of an N × N blurry, noisy image, stored in
column-major order as a vector of length n = N2. Assume b is generated by a linear blurring
operation with additive noise, i.e.,

(29) b = Kxt + w,

where K is the blurring operator, xt ∈ R
n is the unknown true image, and w is noise. The

deblurring problem is to estimate xt from b. Since blurring operators are often very ill-
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conditioned the solution x = K−1b is a poor estimate of xt, and regularization or constraints
must be applied to obtain better estimates [26]. We will formulate the deblurring problem as
an optimization problem of the following general form:

(30) minimize φf(Kx− b) + φr(x) + φs(Dx),

with φf , φs, and φr convex penalty or indicator functions. This optimization problem is a
special case of (1) with

f(x) = φr(x), g(u, v) = φf(u− b) + φs(v), A =

[
K
D

]
.

We now discuss the three terms in (30) in more detail.
The first term in (30) is called the data fidelity term and penalizes or limits the deviation

between the observed image and the model output for the reconstructed image. Typical
choices for φf include a quadratic penalty φf(u) = (1/2)‖u‖2 with ‖ · ‖ the Euclidean norm,
the 1-norm penalty φf(u) = ‖u‖1, or the Huber penalty

φf(u) =

n∑
k=1

hη(uk), hη(v) =

{
v2/(2η), |v| ≤ η,
|v| − η/2, |v| ≥ η.

One can also consider an indicator function φf(u) = δS(u) of a closed convex set S. For
example, if S is a Euclidean norm ball S = {u | ‖u‖ ≤ σ} and we take φf = δS , the problem
is equivalent to

minimize φs(Dx) + φr(x)
subject to ‖Kx− b‖ ≤ σ.

More generally, φf can be a penalty function with a nontrivial domain, such as φf(u) =
−∑i log(1− u2i ) with domφf = {u | ‖u‖∞ < 1}.

Practical algorithms must exploit the fact that the blurring matrix K is highly structured.
For example, if K represents convolution with a spatially invariant point spread function and
periodic boundary conditions are used, then it is block-circulant with circulant blocks. It
therefore has a spectral decomposition K = QH diag(λ)Q, where Q = W⊗W is the Kronecker
product of the length-N DFT matrix with itself, and λ is the 2D DFT of the convolution kernel
[26]. If the point spread function is also doubly symmetric and reflexive boundary conditions
are used, then K can be diagonalized in a similar way by multiplication with orthogonal 2D
discrete cosine transform (DCT) matrices [26, 37]. For other types of boundary conditions (for
example, zero or replicate boundary conditions) K can be expressed as a sum K = Kc +Ks,
where Kc is the blurring operator for periodic or reflexive boundary conditions, and Ks is a
sparse term that corrects the values near the boundary.

The second term in (30) represents a regularization term or a constraint on x. Typical
choices for φr are a quadratic penalty φr(x) = γ‖x‖2/2, or the indicator function of a convex
set (for example, box constraints x ∈ [0, 1]n, added to limit the range of the pixel intensities).
As pointed out in [48, 2, 7], the explicit addition of box or nonnegativity constraints on x can
improve the quality of the restoration substantially.
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The last term in (30) can be used to add a smoothing penalty. In that case the matrix
D ∈ R

2n×n is defined as concatenated vertical and horizontal discretized derivative operators.
With periodic boundary conditions, D is given by

D =

[
I ⊗D1

D1 ⊗ I

]
, D1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
0 0 −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −1 1
1 0 0 · · · 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n×n.

If we choose for φs : R
n × R

n → R the norm

φs(u, v) = γ‖(u, v)‖iso = γ
n∑

k=1

√
u2k + v2k,

then φs(Dx) = γ TV(x) is the TV penalty introduced by Rudin, Osher, and Fatemi [43]. For
quadratic φf and zero φr the general problem (30) then reduces to the classic TV-regularized
deblurring problem

(31) minimize
1

2
‖Kx− b‖2 + γ TV(x).

Another interesting choice for the third term in (30) is φs(Dx) = ‖Dx‖1, where D represents
a wavelet or shearlet transform matrix.

In summary, the problem format (30) includes a variety of useful formulations of the
image deblurring problem. In all of these examples the functions φf , φr, and φs are convex
and relatively simple (i.e., have inexpensive prox-operators), but they are not necessarily
quadratic or differentiable, and they can have a restricted domain. When the functions φf ,
φr, φs are quadratic (squared Euclidean norms), the problem reduces to a linear equation of
the form

(KTK + ρI + σDTD)x = KT b.

If the matrices K and D can be diagonalized by multiplication with DFT or DCT matrices,
fast Fourier transform methods can be used to solve the equation in O(N2 logN) operations
[48, 26].

When one or more of the terms in the objective is not quadratic, the problem must be
solved by an iterative optimization algorithm, customized to exploit the structure in K and D.
Second-order methods, such as Newton’s method or interior-point methods [8], [48, chapter
8], are limited because they require the solution of linear equations KTHfK +Hr +DTHsD,
where the matrices Hf , Hr, Hs are multiples of the Hessians of φf , φr, φs (if these functions
are twice differentiable) or positive definite matrices that result from block-elimination of
the Newton equations in an interior-point method. The presence of these matrices makes it
difficult to exploit structure in K and D. Iterative linear equation solvers can be applied,
using the fast Fourier transform for matrix-vector multiplications, but the reduced accuracy
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of iterative equation solvers often impairs the fast convergence of Newton’s method or the
interior-point method.

Most published deblurring algorithms were developed for special cases of problem (30),
such as the TV-regularized deblurring problem (31). Several of the existing algorithms of TV-
regularized deblurring can be generalized in a straightforward manner to the general problem.
Two such classes of methods are the ADMM and Chambolle–Pock algorithms introduced in the
previous section. The ADMM or split Bregman method described in section 3.2 is a popular
dual decomposition algorithm for large-scale convex optimization [22, 21, 20, 23, 3, 7]. As
illustrated in [3], it can be used to derive simple, efficient algorithms for a range of applications.
To apply ADMM to problem (30) (in its most general case, with nonquadratic φf , φr, φs),
one first rewrites the problem in a form suited for dual decomposition, i.e., with a separable
objective and linear equality constraints,

minimize φf(v) + φr(u) + φs(w)
subject to u = x,

v = Kx− b,
w = Dx,

where u, v, w are auxiliary variables. The main step in each ADMM iteration is an alternating
minimization of the augmented Lagrangian for this problem,

L(x, u, v, w) = φf(v) + φr(u) + φs(w)

+
t

2

(∥∥∥∥u− x+
1

t
p

∥∥∥∥
2

+

∥∥∥∥v −Kx+ b+
1

t
q

∥∥∥∥
2

+

∥∥∥∥w −Dx+
1

t
r

∥∥∥∥
2
)
.

In this expression t is a positive step size, and p, q, and r denote multipliers for the three
constraints. The first of the two alternating minimization steps is over x, keeping u, v, w
constant; the second is over (u, v, w) with fixed x. Since L is separable in u, v, w, the
second step involves three independent minimizations. The minimizations over u, v, w are
straightforward (often with complexity O(N2)) if the functions φf , φf , and φs are simple,
as will be the case in the applications considered here. The minimization over x involves a
linear equation with coefficient matrix I +KTK +DTD. If K and D are diagonalizable by
multiplication with DFT or DCT matrices, this can be reduced to a diagonal equation and
solved in O(N2 logN) operations. The total cost of one iteration of the ADMM method is
therefore O(N2 logN).

A second important and versatile class of first-order algorithms contains the Chambolle–
Pock algorithm and the related primal-dual methods developed in [18, 19, 5, 27, 15]. These
methods solve the primal-dual optimality conditions

(32) 0 ∈
⎡
⎣ 0 KT DT

−K 0 0
−D 0 0

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦+

⎡
⎣ ∂φr(x)

b+ ∂φ∗
f (y)

∂φ∗
s (z)

⎤
⎦

by a semi-implicit forward-backward iteration which requires matrix-vector multiplications
with K and D and their transposes but not the solution of any linear equations. Several other
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types of modified forward-backward splitting algorithms can be applied to the primal-dual
optimality conditions, with a complexity per iteration similar to that of the Chambolle–Pock
method [13, 47].

5. TV deblurring. In this section we present two applications of the primal-dual splitting
methods to a constrained L1 TV deblurring problem

(33)
minimize ‖Kx− b‖1 + γ‖Dx‖iso
subject to 0 ≤ x ≤ 1,

where b is a blurry, noisy image with n pixels stored as a vector, K represents a convolution
operator, and D represents a discrete gradient operator. The variable is an n-vector x. This
problem can be written in the canonical form (1) with

(34) f(x) = δS(x), g(y1, y2) = ‖y1 − b‖1 + γ‖y2‖iso, A =

[
K
D

]
,

where S = {x | 0 ≤ x ≤ 1}.
All the experiments were performed on a computer with a 3.00 GHz AMD Phenom(tm)

II X4 945 processor with 4 cores and 8 GB of RAM. The code was written in MATLAB using
MATLAB version 8.1.0.604 (R2013a).

5.1. Periodic boundary conditions. In the first experiment, periodic boundary conditions
are used in the definitions of K and D. The matrices KTK and DTD can therefore be
diagonalized by the discrete Fourier basis matrix, and equations with coefficient

I + t2ATA = I + t2KTK + t2DTD

are solved very efficiently via fast Fourier transforms. We can therefore apply the algorithms
given in section 3.2.

Figure 2 compares the performances of the Chambolle–Pock, ADMM, primal Douglas–
Rachford, and primal-dual Douglas–Rachford algorithms. The test image b is a degraded
version of the 1024 by 1024 “Man” image from the USC-SIPI Image Database.1 The original
image (scaled so that intensity values are between 0 and 1) was blurred with a 15 by 15
truncated Gaussian kernel with standard deviation σ = 7. Then salt and pepper noise was
added to a random selection of 50% of the pixels. The parameter γ was chosen to give a
visually appealing image reconstruction. A nearly optimal primal objective value f � was
computed by running the primal-dual Douglas–Rachford algorithm for 10, 000 iterations. In
Figure 2 the quantity (fk − f�)/f� is plotted against the iteration number k, where fk is the
primal objective value at iteration k. The original, blurry/noisy, and restored (by primal-dual
Douglas–Rachford) images are shown in Figures 3 and 4.

For each method, close to optimal fixed primal and dual step sizes (and overrelaxation
parameters) were selected by trial and error. The Chambolle–Pock step sizes s and t were
chosen to satisfy tsL2 = 1, where L = (‖K‖2+‖D‖2)1/2 is an upper bound on ‖A‖. Note that
the norms of K and D can be computed analytically because KTK and DTD are diagonalized

1http://sipi.usc.edu/database/

http://sipi.usc.edu/database/
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Figure 2. Relative optimality gap versus iteration number for the experiment in section 5.1.

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 3. Result for the experiment in section 5.1.

by the discrete Fourier basis matrix. The average elapsed time per iteration was 1.37 seconds
for Chambolle–Pock, 1.33 seconds for ADMM, 1.33 seconds for primal Douglas–Rachford, and
1.46 seconds for primal-dual Douglas–Rachford.

As can be seen from the convergence plots, the four methods reach a modest accuracy
quickly. After a few hundred iterations, progress slows down considerably. In this example the
algorithms based on Douglas–Rachford converge faster than the Chambolle–Pock algorithm.
The time per iteration is roughly the same for each method and is dominated by 2D fast
Fourier transforms.

The quality of the restored image is good because the L1 data fidelity is very well suited
to deal with salt and pepper noise. Using an L2 data fidelity term and omitting the interval
constraints leads to a much poorer result. To illustrate this, Figure 5 shows the result of



PRIMAL-DUAL DECOMPOSITION BY OPERATOR SPLITTING 1743

(a) Close-up on original image. (b) Close-up on degraded image. (c) Close-up on restored image.

Figure 4. Close-ups of the results for the experiment in section 5.1.

(a) Deblurred using L2 data fi-
delity term.

(b) Close-up on restoration using
L2 data fidelity term.

Figure 5. Result of using L2 data fidelity term for salt and pepper noise.

minimizing ‖Kx − b‖2 + γ‖Dx‖iso, with γ chosen to give the most visually appealing recon-
struction.

5.2. Nonperiodic boundary conditions. To illustrate the methods of section 3.3, we con-
sider the same problem (33) with nonperiodic boundary conditions [9, 44]. Now K represents
a convolution operator that uses replicate boundary conditions, and D represents a discrete
gradient operator that uses symmetric boundary conditions. The matrices K and D can be
decomposed as K = Kp+Ks and D = Dp+Ds, where Kp and Dp represent convolution oper-
ators that use periodic boundary conditions, and Ks and Ds are sparse matrices that correct
the values near the boundary. Correspondingly, the matrix A in (34) can be decomposed as
A = B + C, where

B =

[
Kp

Dp

]
, C =

[
Ks

Ds

]
.

The two resolvents needed in the mixed splitting algorithm of section 3.3 are inexpensive to
evaluate: in the resolvent of A one exploits the fact that BTB = KT

p Kp + DT
pDp can be

diagonalized by the DFT basis; the resolvent of B involves a linear equation with a sparse
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Figure 6. Relative optimality gap versus iteration for the experiment in section 5.2.

(a) Blurred with 9 by 9 kernel,
10% salt and pepper noise.

(b) Restored using periodic
boundary conditions.

(c) Restored using replicate
boundary conditions.

Figure 7. Result for the experiment in section 5.2.

matrix CTC = KT
s Ks +DT

s Ds.
Figure 6 compares the performances of the Chambolle–Pock, ADMM, primal Douglas–

Rachford, and primal-dual Douglas–Rachford algorithms when b is a degraded version of
the 256 by 256 “cameraman” image. The original image (scaled so that intensity values are
between 0 and 1) was blurred with a 9 by 9 truncated Gaussian kernel with standard deviation
σ = 4. Then salt and pepper noise was added to a random selection of 10% of the pixels.
The parameter γ was chosen to give a visually appealing image reconstruction. A nearly
optimal primal objective value f� was computed by running the primal-dual Douglas–Rachford
algorithm for 10, 000 iterations. In Figure 6 the quantity (fk − f�)/f� is plotted against the
iteration number k. (fk is the primal objective value at iteration k.) The blurry/noisy and
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restored (by primal-dual Douglas–Rachford) images are shown in Figure 7.
Also shown in Figure 7 is a restoration (by primal-dual Douglas–Rachford) using periodic

boundary conditions (and all other parameters unchanged). In this example we see the value
of using correct boundary conditions, as the quality of the restoration with incorrect boundary
conditions is poor.

For all methods, close to optimal fixed primal and dual step sizes (and overrelaxation
parameters) were selected by trial and error. Primal and dual step sizes were implemented in
the algorithms based on Douglas–Rachford by modifying g and A as in (16). The Chambolle–
Pock step sizes s and t were chosen to satisfy tsL2 = 1, where L = (‖Kp‖2+‖Dp‖2)1/2 ≈ ‖A‖.
The norms of Kp and Dp can be computed analytically because KT

p Kp and DT
pDp are di-

agonalized by the discrete Fourier basis. The average elapsed time per iteration was 0.08
seconds for Chambolle–Pock, 0.12 seconds for ADMM, 0.10 seconds for primal Douglas–
Rachford, and 0.10 seconds for primal-dual Douglas–Rachford. In this example, the mod-
ification to Chambolle–Pock (incorporating an overrelaxation step) mentioned in section 3
allows Chambolle–Pock to be competitive with the algorithms based on Douglas–Rachford.

6. Tight frame regularized deblurring. In the next two experiments, we use tight frame
regularization rather than TV regularization in the deblurring model (30). We take φs(Dx) =
γ‖Dx‖1, with D a tight frame analysis operator, i.e., DTD = αI for some positive α [34,
Chapter 5], [30].

6.1. Periodic boundary conditions. We first consider

(35)
minimize ‖Kx− b‖1 + γ‖Dx‖1
subject to 0 ≤ x ≤ 1,

where, as before, b is a blurry, noisy image stored as an n-vector and K represents a convolu-
tion operator constructed using periodic boundary conditions. The matrix D is the analysis
operator for a (shearlet) tight frame [30]. The MATLAB package Shearlab-1.1 is used to
evaluate the tight operator [31].

The problem (35) is a special case of problem (1) with

f(x) = δS(x), g(y1, y2) = ‖y1 − b‖1 + γ‖y2‖1, A =

[
K
D

]
,

and S = {x | 0 ≤ x ≤ 1}. Because KTK and DTD = αI are both diagonalized by the discrete
Fourier basis, we can use the simple splitting algorithm given in section 3.2.

Figure 8 compares the Chambolle–Pock, primal Douglas–Rachford, ADMM, and primal-
dual Douglas–Rachford algorithms. The test image b is a degraded version of the 256 by 256
“cameraman” image. The original image (scaled so that intensity values are between 0 and 1)
was blurred with a 7 by 7 truncated Gaussian kernel with standard deviation σ = 5. Then salt
and pepper noise was added to a random selection of 30% of the pixels. The parameter γ was
chosen to give a visually appealing image reconstruction. A nearly optimal primal objective
value f� was computed by running the primal-dual Douglas–Rachford algorithm for 10, 000
iterations. In Figure 8 the quantity (fk − f�)/f� is plotted against the iteration number k,
where fk is the primal objective value at iteration k. The original, blurry/noisy, and restored
(by primal-dual splitting) images are shown in Figure 9.
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Figure 8. Relative optimality gap versus iteration for the experiment in section 6.1.

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 9. Result for the experiment in section 6.1.

For each method, close to optimal fixed primal and dual step sizes (and overrelaxation
parameters) were selected by trial and error. The Chambolle–Pock step sizes s and t were
chosen to satisfy tsL2 = 1, where L = (‖K‖2+‖D‖2)1/2 is an upper bound on ‖A‖. Note that
the norm of K can be computed analytically because KTK is diagonalized by the discrete
Fourier basis matrix. The norm of D is

√
α because DTD = αI. The average elapsed time

per iteration was 0.54 seconds for Chambolle–Pock, 0.51 seconds for ADMM, 0.51 seconds for
primal Douglas–Rachford, and 0.50 seconds for primal-dual Douglas–Rachford.

The convergence plots are similar to those in the previous experiment (in section 5.1). As
is typical for first-order methods, a modest accuracy is reached quickly, but progress slows
down after the first few hundred iterations. In this example the algorithms based on Douglas–
Rachford converge faster than the Chambolle–Pock algorithm. The time per iteration is
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roughly the same for each method and is dominated by 2D fast Fourier transforms and shearlet
transforms.

6.2. Nonperiodic boundary conditions. We solve a problem similar to (35), but with a
quadratic fidelity term and without the constraints on x:

(36) minimize
1

2
‖Kx− b‖2 + γ‖Dx‖1.

We will use replicate boundary conditions for K. As in the previous experiment, D represents
the analysis operator for a (shearlet) tight frame, constructed as in the previous example.
The matrix K can be decomposed as K = Kp + Ks, where Kp represents a convolution
operator that uses periodic boundary conditions. Therefore, KT

p Kp and DTD = αI are both
diagonalized by the discrete Fourier basis matrix. The matrix Ks is a sparse matrix that
modifies the values near the boundary to satisfy the replicate boundary conditions.

This problem has the canonical form (1) with

f(x) = 0, g(y1, y2) =
1

2
‖y1 − b‖2 + γ‖y2‖1, A =

[
K
D

]
.

Since f is quadratic, the simplified mixed splitting algorithm of section 3.4 can be applied.
However, as indicated at the end of section 3.4, additional simplifications are possible because
g is a separable sum of a quadratic term and a nonquadratic term.

Define g1(y1) = ‖y1 − b‖2/2 and g2(y2) = γ‖y2‖1. The primal-dual optimality conditions
for (36) can be written as

0 ∈
⎡
⎣ 0 KT DT

−K 0 0
−D 0 0

⎤
⎦
⎡
⎣x
z1
z2

⎤
⎦+

⎡
⎣ 0
∇g∗1(z1)
∂g∗2(z2)

⎤
⎦ .

(Note that g∗1(z1) = ‖z1‖2/2+bT z1 and ∂g∗1(z1) = {∇g∗1(z1)} = {z1+b}.) We use the splitting

A(x, z) =

⎡
⎣ 0 KT

s 0
−Ks 0 0
0 0 0

⎤
⎦
⎡
⎣x
z1
z2

⎤
⎦+

⎡
⎣ 0

0
∂g∗2(z2)

⎤
⎦

and

B(x, z) =
⎡
⎣ 0 KT

p DT

−Kp I 0
−D 0 0

⎤
⎦
⎡
⎣x
z1
z2

⎤
⎦+

⎡
⎣0b
0

⎤
⎦ .

Evaluating (x, z1, z2) = (I + tA)−1(x̂, ẑ1, ẑ2) separates into two independent calculations: the
solution of the linear equation [

I tKT
s

−tKs I

] [
x
z1

]
=

[
x̂
ẑ1

]

and the evaluation of a prox-operator z2 = proxtg∗2 (ẑ2). Evaluating the resolvent of B requires
only solving a linear system. This system can be reduced to a system with a coefficient
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Figure 10. Relative optimality gap versus iteration for the experiment in section 6.2.

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure 11. Result for the experiment in section 6.2.

consisting of positive weighted sum of three terms: I+λKT
p Kp+ νDTD. Hence the resolvent

of B can be evaluated efficiently via fast Fourier transforms. Notice that we removed the
variable y which appeared in the method of section 3.4 for quadratic f . This reduces the size
of the monotone inclusion problem significantly.

Figure 10 compares the performances of the Chambolle–Pock, ADMM, primal Douglas–
Rachford, and primal-dual Douglas–Rachford algorithms. The image b is a degraded version
of the “Barbara” image, resized to have size 256 by 256. The original image (scaled so that
intensity values are between 0 and 1) was blurred with a 9 by 9 truncated Gaussian kernel
with standard deviation σ = 4. Then Gaussian noise with zero mean and standard deviation
10−3 was added to each pixel of the blurred image. The parameter γ was chosen to give
a visually appealing image reconstruction. A nearly optimal primal objective value f� was
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computed by running the primal-dual Douglas–Rachford algorithm for 10, 000 iterations. In
Figure 10 the quantity (fk− f�)/f� is plotted against the iteration number k, where fk is the
primal objective value at iteration k. The original, blurry/noisy, and restored (by primal-dual
Douglas–Rachford) images are shown in Figure 11.

For all methods, close to optimal fixed primal and dual step sizes (and overrelaxation
parameters) were selected by trial and error. Primal and dual step sizes were implemented in
the algorithms based on Douglas–Rachford by modifying g and A as in (16). The Chambolle–
Pock step sizes s and t were chosen to satisfy tsL2 = 1, where L = (‖Kp‖2 + ‖D‖2)1/2 ≈ ‖A‖.
The norm of Kp can be computed analytically because KT

p Kp is diagonalized by the discrete

Fourier basis. The norm of D is
√
α because DTD = αI.

The average elapsed time per iteration was 0.55 seconds for Chambolle–Pock, 0.78 seconds
for ADMM, 0.60 seconds for primal Douglas–Rachford, and 0.52 seconds for primal-dual
Douglas–Rachford.

7. Primal-dual decomposition. The mixed splitting algorithm applies to problems in
many areas beyond image reconstruction. For example, one often encounters optimization
problems that are “almost” separable: the functions f and g in (1) are block-separable, and
A = B + C with B block-diagonal and C sparse. In this situation, evaluating the resolvents
of f and g decomposes into independent subproblems which can be solved in parallel. A
linear system with coefficient matrix I +λBTB is also separable and can be solved by solving
independent smaller equations. Systems with coefficient matrix I + λCTC may be solved
efficiently by exploiting sparsity. The mixed splitting algorithm therefore leads to primal-
dual decomposition schemes for almost separable problems. This type of structure generalizes
angular and dual-angular structure [32] found in problems that are separable except for a
small number of coupling constraints (“dual decomposition”) or coupling variables (“primal
decomposition”); see also [10, 38]. The splitting methods discussed in this paper can therefore
be viewed as generalized primal-dual decomposition methods.

To illustrate this with an image deblurring application, we consider a spatially varying
blurring model with a piecewise constant kernel. We assume the image can be partitioned
into rectangular regions such that the blurring kernel is constant on each region (variations
on this basic model are discussed in [36]). If pixels are ordered appropriately (one subimage
after another), then the blurring operator can be represented by a matrix K = Kbd + Ks,
where Kbd is block-diagonal and Ks is sparse, and moreover each block of Kbd represents a
spatially invariant convolution (applied to the corresponding subimage) using periodic bound-
ary conditions. Linear systems involving the blocks of Kbd can be solved efficiently via the
fast Fourier transform. Similarly, a discrete gradient operator can be represented by a sum
D = Dbd +Ds of a block-diagonal and a sparse matrix, where each block of Dbd represents a
spatially invariant convolution (applied to a subimage), using periodic boundary conditions.

We consider again the deblurring model (33), where now the blurring kernel is only as-
sumed to be piecewise constant (and replicate boundary conditions are used for the entire
image). The matrix A in (34) can be decomposed as A = B + C with

(37) B =

[
Kbd

Dbd

]
, C =

[
Ks

Ds

]
.
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Figure 12. Relative optimality gap versus iteration number for the experiment in section 7.

(a) Blurry, noisy image. (b) After 5 iterations. (c) Restored image.

Figure 13. Result for the experiment in section 7.

Equations with coefficient I+λBTB (for a given λ > 0) are easy to solve because I+λBTB is
block-diagonal, with blocks that can be diagonalized by the DFT. Equations with coefficient
I + λCTC can be solved efficiently by exploiting sparsity. We solve (33) using the methods
discussed in section 3.3, with the decomposition (37).

Figure 12 compares the performances of the Chambolle–Pock, ADMM, primal Douglas–
Rachford, and primal-dual Douglas–Rachford algorithms. The noisy, blurry image b is a
degraded version of the 256 by 256 “cameraman” image. The original image (scaled so that
intensity values are between 0 and 1) was partitioned into four subimages, each of which was
blurred with a 9 by 9 truncated Gaussian kernel. (The standard deviations were 4, 3.5, 3, and
2 for the upper-left, upper-right,lower-left, and lower-right subimages, respectively.) Then salt
and pepper noise was added to a random selection of 10% of the pixels. The parameter γ was
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Table 1
Relationship between various methods.

Primal-dual Dual

proximal point algorithm proximal method of multipliers method of multipliers

Douglas–Rachford splitting primal-dual Douglas–Rachford splitting ADMM

chosen to give a visually appealing image reconstruction. A nearly optimal primal objective
value f� was computed by running the primal-dual Douglas–Rachford algorithm for 10, 000
iterations. In Figure 12 the quantity (fk − f�)/f� is plotted against the iteration number
k. (fk is the primal objective value at iteration k.) The blurry/noisy and the restored (by
primal-dual Douglas–Rachford) images are shown in Figure 13. The figure also shows the
image after five iterations of the primal-dual Douglas–Rachford method. In this partially
restored image the artifacts due to the spatially varying blurring operator are still visible.

For all methods, close to optimal fixed primal and dual step sizes (and overrelaxation
parameters) were selected by trial and error. Primal and dual step sizes (for the Douglas–
Rachford methods) were implemented by modifying g and A as in (16). The Chambolle–Pock
step sizes s and t were chosen to satisfy tsL2 = 1, where L = (‖Kbd‖2 + 8)1/2 ≈ ‖A‖. (It can
be shown that ‖D‖2 ≤ 8.) The norm of Kbd can be computed analytically because the blocks
of Kbd are diagonalized by the discrete Fourier basis. The average elapsed time per iteration
was 0.086 seconds for Chambolle–Pock, 0.15 seconds for ADMM, and 0.12 seconds for both
primal Douglas–Rachford and primal-dual Douglas–Rachford.

8. Conclusions. We have presented primal-dual operator splitting algorithms for solving
convex optimization problems

minimize f(x) + g(Ax),

where f and g are closed, convex functions with inexpensive proximal operators, and the
matrix A can be split as a sum A = B + C of two structured matrices. Our approach is
to apply the Douglas–Rachford splitting method to the primal-dual optimality conditions
(Karush–Kuhn–Tucker conditions), expressed as a monotone inclusion. The relationship of
this approach to other well-known methods is illustrated in Table 1. The method of multipliers
(or augmented Lagrangian method) [41] and the Bregman iteration [49] can be interpreted as
solving the dual optimality condition

(38) 0 ∈ ∂g∗(z)−A∂f∗(−AT z)

using the proximal point algorithm. The ADMM and split Bregman methods can be inter-
preted as solving the dual optimality condition using the Douglas–Rachford algorithm [20].
The proximal method of multipliers [41] uses the proximal point algorithm to solve the primal-
dual optimality conditions. We complete this picture by using the Douglas–Rachford method
to solve the primal-dual optimality conditions. This method can therefore be viewed as a
primal-dual version of the ADMM or split Bregman methods, or as an alternating direction
version of the proximal method of multipliers. The primal-dual approach has the advantage
that it lends itself to several interesting splitting strategies. In particular, the “mixed split-
ting” strategy exploits additive structure A = B +C in the linear term, where B and C have



1752 DANIEL O’CONNOR AND LIEVEN VANDENBERGHE

useful, but different, types of matrix structure. We have illustrated this with applications in
image deblurring, in which the matrix B can be diagonalized by a DFT and C is a sparse
matrix.

In the numerical experiments we compared the primal-dual Douglas–Rachford splitting
method with three other methods: the Douglas–Rachford method applied to a reformulated
primal problem (also known as Spingarn’s method), the ADMM algorithm (Douglas–Rachford
applied to the dual), and the Chambolle–Pock algorithm. All methods depend on three
algorithm parameters: a primal step size, a dual step size, and an overrelaxation parameter.
Using different primal and dual step sizes can also be interpreted as first scaling the matrix
A and g and then using a single step size. We observed that with a careful tuning of the
algorithm parameters the four methods performed similarly. In all experiments, the primal-
dual Douglas–Rachford approach is consistently one of the fastest methods. Compared with
the primal and dual Douglas–Rachford approaches it has the advantage that it avoids the
introduction of large numbers of auxiliary variables and constraints. An advantage over the
Chambolle–Pock algorithm is that the step size selection does not require estimates or bounds
on the norm of A. This is particularly important in large-scale applications where the norm
of the linear operators is difficult to estimate (unlike the norms of the convolution operators
encountered in image deblurring). As in ADMM and other applications of the Douglas–
Rachford method, it is difficult to provide general guidelines about the choice of step sizes.
When comparing algorithms we used constant step sizes, tuned by trial and error. More
practical adaptive strategies for step size selection in the Douglas–Rachford method have
been proposed in [29, 28].

Acknowledgments. We thank the Associate Editor and the two reviewers for their very
helpful comments and for bringing reference [15] to our attention.
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