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Cyclic Analyses

Nonlinear pushover analyses were presented in Chapter 3 for models using API and experimental p-y curves. Results from these models were compared with experimental results to assess accuracy. The models used in Chapter 3, given that they were being used for pushover analyses (monotonic analyses), did not consider the influence of cyclic loads. Cyclic loads have been shown to reduce shaft lateral load capacity. Cyclic loading also results in gapping between the shaft and soil. Figure 4.1 depicts a 2 ft (0.6 m) gap that developed next to a highway bridge column during the 1994 Northridge earthquake. The importance of gapping on the overall behavior of the shaft/column/soil system for cyclic displacement is addressed in this chapter. 

As commonly applied, p-y curves model the composite nonlinear soil-shaft interaction behavior, that is, specific mechanisms such as drag, gapping, and passive soil resistance are not independently modeled. Explicit consideration of these mechanisms might allow for improved response predictions; therefore, a detailed p-y element was developed and implemented to assess these issues.

In order to better understand the influence of gapping on shaft/column behavior, two-dimensional nonlinear finite element models were developed using both p-y models, in which the mechanisms that result in nonlinear soil-shaft interaction were lumped into a single nonlinear spring, as well as a more refined model that consists of a nonlinear spring with elastic and plastic soil behavior, and gap and drag behavior.

4.1 cyclic analysis – no gapping

The effect of cyclic loading on API p-y curves is evaluated at two different depths, 3 ft and 40 ft, for one, two and twelve cycles in Figure 4.2. According the Reese (1972), for stiff clay with no free water, twelve displacement cycles can result in a 20% decrease in the soil capacity compared to monotonic loading. According to results presented in Chapter 2 (section 2.2.3.2.), a 20% reduction in the soil capacity of the p-y curves has relatively minor impact on the behavior of the shaft/column system (Figures 2.19 and 2.20). According to test results for twelve cycles to peak top displacements of 6 in. (152 mm) and 18 in. (457 mm), no significant loss in lateral load capacity was observed. The test results are not consistent with results from prior studies; further studies are needed to address the issue of the potential loss in lateral load capacity due to cyclic loads. Therefore, based on test results, modifications to the API p-y curves to account for cyclic loading were not applied. 

The same models described in Chapter 2, section 2.1 and Chapter 3, sections 3.1.1 and 3.1.2 for static analyses were used to assess the impact of cyclic loading without gapping. The cyclic analyses consisted of applying a cyclic displacement history at the top of the shaft/column; the displacement history applied corresponded to the displacement history applied for the test shaft/column (Figure 3.21; Part I). Because the displacement history applied during the test was done so very slowly (i.e., quasi static loading), dynamic (e.g., inertial, damping) effects were not included. Analysis results for the applied cyclic displacement history were compared for the following cases: (1) API p-y curves, (2) experimental p-y curves, and (3) experimental p-y curves with gap/drag components. Analysis results are presented and discussed in the following sections. 

4.1.1
Cyclic response – API p-y curves

The lateral load versus top shaft/column displacement response for the analytical model using API p-y curves is presented in Figure 4.3. The cyclic response is bounded by the load-displacement curve produced from the static pushover presented in the previous chapter (Figure 3.3), which is expected given that potential degradation due to cyclic loads was not incorporated. As noted in Chapter 3, the load-displacement relation using API p-y curves is softer than the one obtained from the test. Experimental and analytical load versus displacement responses are compared for four top shaft/displacement displacement levels (6 in. (152 mm), 9 in. (229 mm), 40 in. (1,016 mm) and 83 in. (2,108 mm)) in Figure 4.4; peak capacities at each displacement level are summarized in Table 4.1. 

Table 4.1: API cyclic p-y analysis – Summary results

	∆TOP, in. 

(mm)
	6

(152)
	9

(229)
	40

(1,016)
	83

(2,108)

	FTEST,kips 

(kN)
	176

(783)
	200

(890)
	297

(1,321)
	307

(1,366)

	FAPI, kips 

(kN)
	140

(623)
	174

(774)
	316

(1,406)
	330

(1,468)

	FAPI / FTEST
	81 %
	87 %
	106
	107 %


At small displacement levels (i.e., less than 9 in. (229 mm)), the stiffness and strength of the system are underestimated by the model. At displacement levels of 6 in. (152 mm) and 9 in. (229 mm), the lateral forces required to reach these displacement levels are 19% and 13% lower than measured during the test for the same displacement levels. For large displacement cycles (> 48 in. (2,108 mm)), the model represents the lateral load capacity of the test system reasonably well. The results obtained at large displacement levels are likely to be moderately impacted by the assumed analytical material relations (especially for the reinforcing steel). The model assumes that plane sections remain plane, whereas steel tensile strains for cyclic loadings are commonly less than predicted based on this assumption due to slip between the concrete and the reinforcing bar (e.g., see Thomsen and Wallace, 1995). Therefore, the capacity predicted with the analytical model continues to increase as the top displacement increases, whereas the capacity observed from the test is relatively flat.

4.1.2
Cyclic response – Experimental p-y curves

The cyclic load versus displacement response for the analytical model using experimental p-y curves is presented in Figure 4.5. The cyclic response is bounded by the results obtained with the static pushover presented in the Chapter 3, section 3.2. As anticipated, based on the results presented in Chapter 3, section 3.2, the relation presented in Figure 4.5 using the experimental p-y curves, is slightly stiffer than the results obtained during the test. 

Experimental and analytical load versus displacement responses are compared for four displacement levels (6 in. (152 mm), 9 in. (229 mm), 40 in. (1,016 mm) and 83 in. (2,108 mm)) in Figure 4.6; peak capacities at each displacement level are summarized in Table 4.2. 

Table 4.2: Experimental cyclic p-y analysis: Summary results

	∆TOP, in. 

(mm)
	6

(152)
	9

(229)
	40

(1,016)
	83

(2,108)

	FTEST, kips 

(kN)
	176

(783)
	200

(890)
	297

(1,321)
	307

(1,366)

	FEXP, kips 

(kN)
	158

(703)
	219

(974)
	340

(1,512)
	350

(1,557)

	FEXP / FTEST
	90 %
	110 %
	114
	114 %


Experimental and analytical results compare favorably at small displacement levels; however, the analytical model tends to overestimate the shaft/column capacity at large displacement (i.e., larger than 48 in. (2,108mm)). As well, the radius of curvature for the loading and unloading is less than obtained from the test. The radius of curvature for the loading and unloading branches is influenced by the cyclic reinforcing steel and reinforced concrete models, as well as gap opening and closing, which is not addressed in this model. 

4.1.3
Cyclic response – Local behavior

The global cyclic behavior was presented in sections 4.1.1 and 4.1.2 for the analytical models using API and experimental p-y curves, respectively. It was observed that both analytical models captured overall (global) load-displacement response reasonably well. However, results presented in Chapter 3, section 3.5, indicate that local responses (e.g., curvature) are more sensitive than global responses to model perturbations. Therefore, the local behavior is studied at three specific peak displacement levels: 9 in. (229 mm), 40 in. (1,016 mm) and 83 in. (2,108 mm). These displacement levels correspond to small displacements (prior to yield, ∆/∆y between 0.45 to 0.65), moderate displacements (moderate ductility, ∆/∆y between 2 and 3) and large displacements (large ductility, ∆/∆y between 4 and 6) at the top shaft/column, respectively.

Curvature response

Figures 4.7 through 4.9 present the curvature profiles over the height of the shaft/column for the three different peak top shaft displacement levels (9 in. (229 mm), 40 in. (1,016 mm) and 83 in. (2,108 mm)). Observations made from the comparison of Figures 4.7 through 4.9 are discussed in the following paragraphs:

(a) 9 in. (229 mm) lateral top displacement:

Shaft response for this lateral top displacement is essentially elastic, with minor yielding of soil springs. The maximum curvature occurs at a greater depth for the model based on API p-y curves (about 5 ft (1.5 m) below ground), compared with the model based on experimental p-y curves (about 2 ft (0.6 m) below ground). Curvature profiles derived from the test results indicate that, at this displacement level, the maximum curvature occurs approximately 3 ft (0.9 m) below ground. The results of the cyclic analyses are consistent with the results obtained from the nonlinear pushover presented in Chapter 3, that is, because the API p-y curves are softer then the experimental p-y curves, the maximum curvature occurs at a greater depth than determined from tests data. As well, the magnitude and depth of the peak curvature is essentially the same as that obtained in the pushover analyses (Figures 3.5, 3.11), indicating that magnitude and location the curvature is not significantly influenced by cyclic response where gapping effects are not considered. 

(b) 40 in. (1,016 mm) lateral top displacement:

Yielding of the test shaft/column occurs at a top displacement of approximately 16 in. (406 mm); therefore, at this displacement level, inelastic deformations (curvatures) exist (i.e., a plastic hinge has formed). The centroid of the plastic hinge varies depending on the model considered: the model using API p-y curves locates the centroid of the plastic hinge at a depth of 6 ft (1.8 m), whereas the model using experimental p-y curves locates the centroid of the hinge at a depth of 3 ft (0.9 m). Test results indicate that the centroid of the plastic hinge was located approximately 3 ft (0.9 m) below grade. The analytical model using the API p-y curves overestimates the depth at which the hinge forms, mainly because the API p-y curves are softer then the p-y curves derived from test results. Although the model using the experimental p-y curves accurately predicts the location of the plastic hinge, it overestimates the peak inelastic curvature by 50%. As well, peak curvature profiles for both cyclic analyses are essentially the same as that obtained for the pushover analyses (Figures 3.5, 3.11), indicating the local response is not significantly influenced by cyclic response where gapping effects are not considered. 

(c) 83 in. (2,108 mm) lateral top displacement:

The curvature profiles over the height of the shaft/column for the two analytical models, as well as the relation obtained from the test, are plotted in Figure 4.9. At this displacement level, the hinge location for the analytical model is similar to the results for 40 in. (1,016 mm), although the magnitude of the peak curvature increases. Test results indicate that the centroid of the plastic hinge migrates from approximately 3 ft (0.9 m) below ground line at the 40 in. (1,016 mm) peak displacement level, to approximately 5 ft (1.5 m) below ground line for the 83 in. (2,108 mm) peak displacement level. 

As anticipated, based on the analysis results presented in Chapter 3 (section 3.5), more significant variations in local responses (i.e., curvatures) are observed relative to global responses (i.e., load–displacement). Analysis results are summarized in Table 4.3. According to Table 4.3, none of the analytical models compare favorably with the experimental results at the local level. 

Table 4.3: Cyclic p-y analyses: Curvature summary

	∆TOP in. 

(mm)
	9

(229)
	40

(1,016)
	83

(2,108)

	(max_TEST (/in.)

(max_TEST (/mm)

location*, ft (m)
	6.2 10-5
(2.4 10-6)

at 3 ft (0.9 m)
	4.7 10-4
(1.9 10-5)

at 4 ft (1.2 m)
	10.0 10-4
(3.9 10-5)

at 5.5 ft (1.7 m).

	(max_API (/in.)

(max_API (/mm)

location*, ft (m)
	4.2 10-5
(1.7 10-6)

at 5 ft (1.5 m)
	3.2 10-4
(1.3 10-5)

at 6 ft (1.8 m)
	8.6 10-4
(3.4 10-5)

at 6 ft (1.8 m).

	(max_API / (max_TEST

	68 %
	68 %
	86 %

	(max_EXP (/in.)

(max_EXP  (/mm)

location*, ft (m)
	5.2 10-5
(2.0 10-6)

at 2 ft (0.6 m)
	6.5 10-4
(2.6 10-5)

at 3 ft (0.9 m)
	11.8 10-4
(4.6 10-5)

at 3 ft (0.9 m)

	(max_EXP / (max_TEST

	84 %
	138 %
	118 %


* Location of peak inelastic curvature below ground line. 

Displacement response profiles: 

Figures 4.10 through 4.12 present the displacement profiles over the height of the shaft for three different peak top displacement levels (9 in. (229 mm), 40 in. (1,016 mm) and 83 in. (2,108 mm)). Observations made from the comparison of Figures 4.10 through 4.12 are discussed in the following paragraphs:

(a) 9 in. (229 mm) lateral top displacement:

From Figure 4.10, it is observed that the displacement profile obtained from the analytical model, using experimental p-y curves is in good agreement with the shaft/column displacement profile based on the experimental results. The lateral displacement of the shaft/column is negligible for depths exceeding about 13 ft (4.0 m) below ground line. The displacement profile obtained from the analytical model using API p-y curves exhibits much softer behavior, with a ground line displacement 1.6 times greater than measured during the test. 

(b) 40 in. (1,016 mm) lateral top displacement:

For larger displacements, the analytical model based on API p-y curves exhibits softer behavior than measured during the experiment (Figure 4.11) and the model based on experimental p-y curves is stiffer than the test results below ground line. This finding was not observed at the 9 in. (229 mm) displacement level. This may be due to gap effects, which were observed during the experiment for top displacement cycles exceeding 9 in. (229 mm).

(c) 83 in. (2,108 mm) lateral top displacement:

The displacement profiles over the height of the shaft/column for the analytical models and test results are presented in Figure 4.12. As expected, the analytical model using API p-y curves exhibits significantly softer behavior than the analytical model using experimental p-y curves. 

(d) Summary:

Comparison of the analytical and experimental results indicates that the model based on the p-y curves derived from the experimental data reproduces the global response (load versus displacement) reasonably well; however, local responses are not well captured. Analytical results using the API p-y curves do not capture either global or local responses nearly as well. 

Adequately representing both global (lateral load capacity and lateral stiffness) and local (location and magnitude of inelastic curvatures) responses is critically important for assessing the performance of existing and new bridges. Adequate representation of the lateral stiffness is an important component in assessing the likely displacement response of the system, and may influence significantly the level of detailing required within the yielding region of the shaft. Accurate prediction of the location and magnitude of inelastic local deformations is required to determine the amount and distribution of transverse reinforcement required to confine the shaft/column core concrete and to restrain buckling of longitudinal reinforcement. 

Given the importance of these factors, and the discrepancies noted between the analytical models and the experimental results, more refined modeling options were investigated. In particular, an improved model to represent the shaft-soil interactions was developed and implemented in the OpenSees (http://opensees.berkeley.edu /OpenSees/ developer.html) computational platform being developed within the Pacific Earthquake Engineering (PEER) Center. Background on the model and the implementation, as well as comparisons with experimental results, are provided in the remainder of this chapter. 

4.2 
Effect of gapping

4.2.1
Background on gapping effects 

Gapping occurs when cyclic loading is applied to the structure, generally with increasing gap width for increasing applied load or displacement amplitude. Gapping may have a significant influence on the structural response of a shaft/column; however, modeling the complex gap behavior is difficult. For example, spalled concrete may fall into the gap, or for larger gaps in cohesionless soils, soil particles may fall into the gap. In either case, the materials that fall into the gap alter the shaft/column response. 

Experimental results (Welch, 1972, Reese, 1975, O’Neill, 1984) have shown that a zone of reduced resistance tends to form around the top of a pile subjected to cyclic loading. This behavior is only noted near the surface, where the overburden pressure is not large enough to force the soil mass to remain in contact with the pile as it undergoes cyclic movement. Therefore drag forces (or friction forces along the side of the pile) are generated. This drag resistance may increase gradually from a very small amount near the surface to the point where the horizontal overburden pressure is large enough to force all the soil elements against the pile, thus mobilizing the fully confined resistance of the soil throughout the stroke. 

4.2.2 Existing models 

The Winkler assumption is based on the idea that the soil-pile interaction force (p) at a given depth is related only to the pile shaft displacement at that depth. Based on this assumption of independence, the soil is modeled by individual springs along the pile length, as shown on Figure 4.13.

The p-y relationships may seem to be a nonlinear extension of the Winkler beam-on-elastic-foundation, however, there is a difference between the two methods; the Winkler model considers only compressive force between the foundation and the soil, whereas the p-y model includes lateral compression on the leading side, shear friction on the two adjacent sides and small compression on the back side of the shaft. It is therefore misleading to think of p-y model as a compression model only, even if such model appears to treat the soil-structure-interaction as such.

Because the p-y spring accounts for all these parameters, and because the influence of these factors are not well established, it has been necessary to calculate these p-y curves from back-calculating them from full-scale tests. The results are often extrapolated to other sites.  However, in order to evaluate the effect of each of these parameters individually, more comprehensive models are required. In order to capture nonlinear soil-shaft/column interaction, a model should include the effects of the nonlinear p-y behavior, which consist of elastic and plastic soil behavior, as well as gapping effect. 

Novak and Sheta (1980), and Nogami et al. (1992), studied the soil-pile structure system for cases where the dynamic load is applied at the pile head or column head. They separated the soil around the shaft/column into different zones, i.e., the near-field (plastic zone, which includes hysteretic damping), where strong nonlinear soil-pile interaction occurs, and the far-field, where the behavior is primarily linear elastic. In a time domain analysis, an interface model is placed in between the pile shaft and the soil model in order to reproduce precisely the formation and the behavior of a gap at the soil-pile interface.

Boulanger et al. (1999) developed a model to represent the soil-shaft/column interaction based on a similar idea. The model is presented in Figure 4.14. The backbone of the p-y curve was derived from Matlock’s (1970) recommendation for a Bay Mud (soft clay). The gap effect included in the model was based on the procedure developed by Matlock et al. (1978) for modeling the residual resistance, which represents the drag force on the sides of the shaft/column as it moves across the gap. This residual resistance is specified by a factor Cd, which is defined as the ratio of the residual resistance to the ultimate resistance. 

The nonlinear p-y behavior is conceptualized as consisting of three different elements in series: (1) an elastic element, (p-ye), (2) a plastic element, (p-yp), and (3) a gap element. The gap element is defined as a nonlinear closure spring, (pc-yg) in parallel with a nonlinear drag spring, (pd-yg). The nonlinear drag spring models the residual resistance of the soil when the shaft/column moves through the gap, whereas the closure spring models the closing of the gap created, when the shaft regains contact with the soil. Because these two effects are occurring simultaneously, they are modeled in parallel. The equations describing the model are:
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Where, for a given depth, p is the total pressure imposed on the shaft, pp is the pressure due to plastic pressure, pd is the pressure due to drag force, pc is the pressure associated with closure, y is the total shaft displacement, ye is the shaft displacement associated with elastic deformation, yp is the shaft displacement associated with plastic deformation, and yg is the shaft displacement associated with gap deformation. The equations governing the behavior of each element are given below:

(a) Plastic spring:

The plastic spring (Figure 4.14) has an initial range of rigid behavior (infinite tangent modulus) between –Crpult <p < Crpult where Cr is the ratio of p/pult, when plastic yielding first occurs (i.e., first excursion). Beyond the rigid range, loading of the plastic spring is prescribed by:
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Where pult is the ultimate resistance of the p-y element in the current loading direction, p0 represents the pressure at the start of the current plastic loading cycle, yop represents yp at the start of the current plastic loading cycle, c is a constant to control the tangent modulus at the start of plastic yielding, and n is an exponent to control sharpness of the (p-yp) curve.

(b) Closure spring: 

The closure spring (Figure 4.14) is described by the following equation: 
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(4.4)

where yo+ and yo- are memory terms for the positive and negative gaps developed, respectively, and y50/100 and -y50/100 are the initial values for the gaps. 


This element could be seen as a switch, which is on when the gap is open and off as soon as the gap is closed. The terms controlling the switch are the terms in the denominators within the bracket:

      or       
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The term y50/50 controls the ‘location’ of the asymptotic branch, whereas the factor 1.8 (in Eq. 4.4) ensures that pc reaches pult during the virgin loading.

The factor 1.8 is based on the soil properties considered, such that, when rewriting Eq. 4.4, when y reaches yo+, on the virgin loading, the following equation is satisfied.
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Enlargement of the gap follows logic similar to that of Matlock (1978), that is, the peak displacement reached minus the displacement associated with the unloading branch at slope of p50/y50, allowing for a smooth transition in the load-displacement behavior as the gap closes and opens. 

(c) Drag spring: 

The drag element (Figure 4.14) represents the side friction force developed as the pile moves through the gap. The equation used to describe this phenomenon is:
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(4.7)

where Cd is the ratio of the maximum drag force to the ultimate resistance of the p-y element, pod represents pd at the start of the current loading cycle, and yog represents yg at the start of the current loading cycle.

(d) General behavior: 

In the elastic region, only the elastic element is activated. When soil plastic deformations occur for the first time, the elastic and plastic elements are activated; therefore, the model behaves in a similar way as the p-y curves on which the model is based. 

When unloading occurs, a gap is created and the drag and closure elements are activated (closure tangent modulus is no longer infinite), as well as the plastic and elastic elements. However, when the shaft moves inside the gap (away from the edge of the gap), only drag friction governs the response (tangent modulus associated to drag and closure is about zero), as all materials are in series: 
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4.2.3
Radiation damping

When dynamic effects are considered, it is important to model radiation damping. Extensive studied have been performed to get a better understanding of the radiation damping effect.

Wang et al. (1998) investigated the effect of radiation damping, when modeled in parallel or in series (Figure 4.15) with the other elements (elastic, plastic, gap, and drag element). When radiation damping is modeled in parallel with a hysteretic element (e.g., elastic, plastic, drag and closure elements), shallow p-y elements dynamically loaded past yield can produce dashpot forces exceeding the ultimate capacity of the p-y springs. In addition, the model did not capture the lengthening of the single pile system’s fundamental period observed in the centrifudge tests (Wang, 1998). However, when radiation damping is modeled in series (where the dashpot is placed in parallel with only the elastic component, and in series with the plastic element and the drag-closure in parallel element) damping is dependant on the stiffness and strength of the p-y curves, which seems realistic and avoids the excessive damping forces that is developed with the parallel model. 

The dashpot value for radiation damping can be defined using the equation derived by Gazetas (1984): 
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Where B is the pile diameter, ( is the mass density of the soil, (s is the shear wave velocity, and (p is the P-wave velocity. However, for undrained analyses of clay, the soil is nearly incompressible, the P-wave velocity can become large, and thus the damping can be over-estimated. To avoid this problem, Wang (1998) developed the following expression: 


[image: image11.wmf]z

B

c

s

D

=

n

r

4





(4.10)

The model presented by Boulanger et al. (1999), presented in Figure 4.14, assumes that the dashpot acts in parallel with the elastic element only, with a constant damping value given by Eq 4.10, as suggested by Wang (1998). 

4.2.4 Model Validation

The model was validated against centrifuge test results from single-pile-supported structures subjected to nine different earthquakes. The tests were performed using a servohydraulic shaking table on a 9 m (29.5 ft) radius centrifuge at the University of California at Davis. The models were tested in a flexible shear beam (FSB) container, consisting of a series of stacked aluminum rings separated by soft rubber that enables the container to deform with the soil. 

An aluminum pile was used in the centrifuge testing, with a mass per unit length of 0.37 Mg/m and a flexural stiffness of 417 MN/m2, which is approximately equivalent to a 0.67 m diameter steel pipe pile with a 19 mm wall thickness. The soil profile consisted of two horizontal soil layers. The upper layer (6 m thick) was reconstituted Bay mud (LL=88, PI=48) placed as a slurry (water content ( 140%) in four equal layers, whereas the lower layer was fine, uniformly graded Nevada sand (cu=1.5 and D50=0.15 mm) at a dry density of 1.66 Mg/m3. 

According to this experiment, reasonable agreement was obtained between the dynamic p-y analyses (including gap effect and radiation damping) and the centrifuge model data over the wide range of shaking intensities and earthquake motions considered. Peak structure motions (accelerations and displacements) at the top of the pile were underestimated on average by about 15 to 20%, when performing analytical studies including gap effects with the model discussed in Chapter 3 (with c=10, n=5, Cr=0.35 and Cd=0.3). 

One of the drawbacks of the model used in the centrifuge study resides in the fact that it was derived to replicate small diameter shaft behavior in soft clay. Therefore, the representation of the plastic soil behavior may not be appropriate for other soils or larger shaft diameters (especially as the parameter y50 is much larger for stiffer soils or larger diameters). As well, the recommended values for the various parameters that define the model may not be appropriate for other conditions (e.g., drag participation). A value of 35% was recommended for the percentage of drag ultimate resistance to the total ultimate resistance of a given p–y spring. This percentage may not be appropriate for conditions not addressed in the study (Boulanger at al., 1999). 

4.2.5 Model Evaluation

As a first step, the model proposed by Boulanger et al. (1999) was investigated to understand how the different components of the model (elastic, plastic, drag, and closure elements) work and interact. The model was written in C++ and incorporated in the OpenSees platform. The following subsections provide background on the model development and implementation, as well as presentation of the model derived in this study to capture the “gapping effect”. In the subsections that follow, for ease of reference, the model is referred to as the “gap” element, although the element incorporates elastic and plastic passive soil pressure resistance, as well as gap and drag behavior. 

In the model, the drag and gap closure elements act in parallel, i.e., they act simultaneously because the closure model acts as a switch that deactivates the plastic and the elastic element when the gap is open. The elastic behavior, plastic behavior, and the combined drag/closure behavior are assumed to act in series. The behavior of the gap element is based on the composite behavior of the four sub-elements: 

(1) Elastic Behavior: The elastic soil behavior.

(2) Plastic Behavior: The plastic soil behavior (including frontal pressure and skin friction, Figure 4.16), which is directly related to the p-y curves. The equation derived by Boulanger et al. (1999) is appropriate to describe the plastic soil behavior; however, the equation proposed by Reese (1975) could also be used to generate the plastic backbone curve. For the model implemented by Boulanger et al. (1999), the following equations were used: 
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where pult is the ultimate resistance of the p-y element in the current loading direction, p0 represents the soil pressure at the start of the current plastic loading cycle, yop represents yp at the start of the current plastic loading cycle, c is a constant to control the tangent modulus at the start of plastic yielding, and n is an exponent to control sharpness of the (p-yp) curve. The plastic spring is “rigid” plastic, that is, no plastic deformation occurs until the capacity of the elastic spring is reached. 

The values for c and n are specified by the ‘user’ to produce a reasonable match with the backbone p-y curves (based on API recommendation or experimental data). It is important to note that Boulanger et al. (1999) recommend c=10 and n=5 for soft clay; however, such values are based on a value for y50 one-tenth that expected for a 6 ft (1.8 m) diameter shaft in stiff clay. 

(3) Drag Behavior: The model for drag behavior is shown in Figure 4.17 for a given cycle, and accounts for the residual resistance when the pile moves through the gap created due to the applied cyclic displacement history (or loading). The equations describing the drag behavior are: 
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                 (4.14)

where Cd is the ratio of the maximum drag force to the ultimate resistance of the p-y element, pod is the drag force pd at the start of the current loading cycle, and yog is the gap displacement yg at the start of the current loading cycle. As indicated in Figure 4.14, the drag force acts in parallel with the gap sub-element, and in series with the elastic and plastic sub-elements. 

(4) Gap closure:  Contact or loss of contact between the shaft and the soil (when the gap opens or closes) is modeled as shown in Figure 4.18. The term ‘closure spring’, suggested by Boulanger et al. (1999), is based on the fact that this model has a non zero tangent modulus only when the gap is closed, or is almost closed or open (a short transition or ramp is provided to avoid numerical problems, Figure 4.18). The equations describing this behavior are: 
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where yo+ is a memory term for the positive side of the gap with initial value of y50/100, and yo- is a memory term for the negative side of the gap with initial value of -y50/100. 


The value Cc is derived to ensure function continuity between the plastic and the drag/closure elements; therefore, this parameter depends on the p-y curve used. Boulanger et al. recommended a value of Cc=1.8; however, a value between 0.5 and 2.0 is recommended by the author. For example, in studies presented later, a value of Cc = 0.5 is used for a model with 20% drag participation, and a value of Cc=2.0 is used for a model using 80% drag participation.


The following parameters are required to describe the model: D, (, J, (c, pult, y50, c, n, Cr, Cd, y50_fraction, Cc, and Ke. Parameters (, J, (c, pult, y50 are obtained from laboratory or field data. Parameters c, n, Cr, Cd, y50_fraction, Cc, and Ke are estimated by the user to match the backbone of the p-y curves (Cr and Ke are defined directly from p-y curves not including gap effect, Cd is defined based on the drag force expected, c and n are defined by iteration to match the initial backbone of the p-y curves, and, y50_fraction (values between 10 and 50 are recommended) and Cc are defined by iteration to ensure continuity between plastic and ‘gap’ behavior (i.e., ensure that the closure pressure when the gap closes reaches pult)).


According to the model description, it appears that, even if the equations state that the elastic, plastic and drag-closure elements are in series and therefore act simultaneously (Eq. 4.2), the drag and closure elements govern the spring behavior when the gap is open, whereas the plastic and elastic elements govern the spring behavior when the gap is closed. The ‘gap closure element’ serves as a switch to ‘turn on and off’ the plastic behavior: (1) when the gap is open, only the drag and the closure elements are activated, (2) when the gap starts to close (before soil contact), a transition zone is defined, where the soil pressure increases systematically from the pressure at drag to the ultimate soil resistance for the previous maximum gap displacement, and (3) when the shaft is in contact with the soil, the drag and closure elements are turned off, and the elastic and plastic elements are activated. However, to check this interpretation, a specific study on drag, closure and plastic participation was conducted.

The model was coded in C++ and incorporated into OpenSees platform being developed by the PEER Center. The complete model is presented on Figure 4.19 for an arbitrary loading cyclic. In Figure 4.19, the following values were used for these parameters (units: in. and kips): D=72.0 in., (= 0.07 lb/in3, J=0.25 (c=0.007in./in., pul=6000.0 lb/in, y50 =1.26 in., c=10, n=5.0, Cr=0.85, Cd=0.50, y50_fraction=33, c=1.8, and Ke= 24,000 lb/in2.

According to the model, the elastic, plastic and drag/closure elements are acting in series. An iterative process using an equilibrium check was implemented to determine the relative amounts of elastic, plastic and drag displacements. In order to simplify this study, the elastic and plastic elements were combined into a single sub-element.
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By defining a fraction (, which represents the participation of drag displacement relative to the total displacement, and by varying ( between 0 and 1, the values of drag pressure, closure pressure, and plastic pressure (including elastic pressure) were evaluated for each value of ( at each displacement level y, that is: 
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 (where ( is a very small value), as the springs are in series. The algorithm used to obtain equilibrium is provided in Appendix C. Based on use of this algorithm, the percentage of the total displacement associated with drag and plastic deformations are determined that result in equal pressure (equilibrium) between plastic element and drag-gap closure element. The complete program is presented in Appendix C.

It is important to note that the above algorithm is based strictly on the information within the referenced paper (Boulanger et al., 1999). Implementation of the concepts that serve as the basis for the model can be accomplished in a number of ways. This strict interpretation was studied to assess the results obtained with the model. This studied was followed by several studies aimed at simplifying the approach.  

According to this initial study, most of the displacement was due to plastic deformation (more than 85%) when the shaft was in contact with the soil (the remaining deformation is due to drag/closure), whereas a majority of the total displacement at larger displacement cycles was represented by the drag and closure (more than 95%) when the shaft moves within the gap (Figure 4.19). 

Therefore, the soil spring behavior is effectively defined as follows:

(1) When the gap is closed: 
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(2) When gap is open: 
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(3) When the gap is closing or opening:

A transition zone is created where the behavior switches from drag-closure to elastic behavior. This allows for a smooth transition when the gap closes or opens.
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This result is consistent with expectations, albeit, not obvious from the algorithm defined in Appendix C. Given these findings, the potential to simplify the model were studied. 

4.2.6
Simplified model

The model presented in section 4.2.5 was exercised to better understand how the various components of the model contribute to the composite p-y behavior. A review of results for the 6 ft (1.8 m) diameter shaft/column system indicated that the plastic and elastic elements governed the response when the shaft is in contact with the soil (i.e., essentially no drag-closure element participation), whereas most of the displacement is represented by the drag-closure behavior when the shaft moves inside the gap. The closure element serves as a switch for the plastic element. Based on this observation, a simplified model was developed, where three distinct sub-elements were considered. The advantage of the simplified model developed is that it is significantly less computationally intensive.

4.2.6.1 Simplified p-y gap element: Development and assessment 


The simplified model developed incorporates elastic, plastic, gap, and drag behavior. Background, development, and assessment of the simplified p-y model are presented in the following paragraphs. 

(1) Elastic Behavior:  The equations describing the elastic behavior are:  
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Where pe and Ke are the maximum elastic soil pressure and the elastic stiffness, respectively. This region is valid as long as the total pressure p does not exceed Cr*pult (which was defined as the pressure at which plastic deformation first occurs). The parameter Cr is defined by the user based on the backbone p-y curve at a given depth (i.e., the elastic region of the given backbone p-y curve). 

(2) Plastic Behavior:  Plastic behavior is assumed to occur when the shaft is in contact with the soil, where the soil pressure exceeds Cr*pult. The plastic behavior includes both side shear friction and front pressure acting on the shaft when the gap is closed. Therefore, when the gap is closed, the plastic behavior replicates the backbone p-y behavior (elastic, plastic and drag behavior). For convenience, the elastic resistance was included within the plastic resistance in the implementation, as it is already built in the p-y backbone curve. The soil pressure (which is defined as force per unit length over the shaft height, or, for a given soil spring spacing over the shaft height, as force) and tangent modulus are defined as: 
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 (3) Drag and Gap Behavior:  When the gap opens, the only sub-element active is the drag element, which represents the side friction between the soil and the shaft, when the shaft moves inside the gap. The closure sub-element acts in parallel with the gap, to allow for gap opening and closing; the closure sub-element acts as a switch, activating the elastic and plastic sub-elements when the gap is closed, and disabling the elastic and plastic sub-elements when the gap is open. Considering the complete equations governing the system: 
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When the gap is closed: Kc ( ( (Figure 4.19) and K(
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 and pc is large (not of interest); therefore the plastic function governs the response. However, when the gap is open and the closure tangent modulus is Kc ( Kd ( 0, K(
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The gapping closing or opening region is defined as the displacement between the maximum prior displacement minus a residual closing displacement (elastic unloading displacement) defined as a fraction of y50 (a value of y50/30 is recommended for this case, based on the studies that follow). The elastic sub-element is placed in series with the drag and gap sub-elements, and the plastic sub-element, to control the loading and unloading curve, when opening and closing of the gap occurs (i.e., when Kc is very large, near closing or opening of the gap, the stiffness of the system is governed by the elastic stiffness (Figure 4.20)). This allows a smooth transition between gap-drag behavior to plastic behavior.

The model, modified as noted, is presented in Appendix D. The modified model is less computationally challenging than the original formulation, and produces essentially the same results. 

An additional consideration in the development of gap elements is the issue of continuity (required, in order to implement a model within OpenSees). In the formulation developed by Boulanger et al., some parameters (such as n, c, Cc, Cd) were reevaluated during the iterative process to ensure continuity of the overall load–displacement relation. The continuity problem general arises due to the significant change in stiffness that results from gap closure, or a change in load direction (unloading). This re-evaluation within each step resulted in convergence problems within OpenSees for some cases. This problem is avoided in the simplified formulation. 

4.2.6.2 Proposed simplified model


Based on the presentation in the previous section, a simplified model was coded and implemented within OpenSees. Force (or pressure) versus displacement response for each sub-element are identical to the equations used previously, in section 4.2.5, except for the plastic sub-element. In the prior formulation, the plastic sub-element involved both shear friction and frontal pressure, which complicated the solution process. An alternative formulation is to place the drag element in parallel with elastic and plastic sub-elements. In this formulation, the elastic and plastic sub-elements account only for the passive pressure of the shaft against the soil. A schematic of this model is presented in Figure 4.20.b, and the following equations are used to define the behavior of the various sub-elements: 

(1) Elastic Behavior:  
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 (2) Plastic Behavior when shaft is in contact with the soil:  

The plastic element is defined such that it only considers the frontal pressure. This element is activated when the elastic passive soil resistance has been exceeded. Note that, as mentioned before, the elastic element is incorporated within the plastic element for convenience.
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(Kc is approximately zero as the drag force is reaching an ultimate value before the gap is closed, Figure 4.14)

(3) When gap is open:  When the gap is open, the skin friction is the only element effectively active:
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(4) When gap opens or closes:  When the gap is opening or closing; this is the transition between gap behavior to elastic-plastic behavior or vice-versa. This region is defined between the maximum prior displacement (in the loading direction considered) minus an unloading displacement. In this region, the model is capturing the elastic behavior of the soil at the beginning of the reloading: 
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 (5) Summary:  This model gives essentially the same results as the original model considered (Figure 4.20), even if a softer loading rate is observed on the first cycle (i.e., drag is not mobilized as quickly as implied by a given p-y curve). This difference will have a negligible influence on the global and local structural response, as minor variations in the p-y stiffness and ultimate strength do not affect responses significantly (see sensitivity study on p-y backbone shape in Chapter 2). 


For convenience, the model where the drag sub-element is placed in parallel with the closure sub-element (Figure 4.20.a) is referred as Model A, whereas the model with the drag sub-element in parallel with the elastic, plastic, and closure sub-elements (Figure 4.20.b) is referred as Model B. 

Soil spring force deformation response is plotted for a given displacement history in Figure 4.21 for both Model A and Model B. The relations are consistent with the findings reported by Smith (1986), which stated that the skin friction is mobilized first. However, the rate at which the skin friction (drag) is mobilized is faster for Model B than for Model A. This is shown on Figure 4.21, for Model B, the virgin loading of the p-y curve exhibits lower soil resistance than for Model A (i.e., the ultimate soil resistance is reached at a displacement 2.5 times smaller for Model A than for Model B). Therefore, Model B appears more appropriate based on these results, and also makes sense as drag acts when the gap is open and closed. 

A further simplification (Model C), where an elastic-perfectly plastic model was used to represent the drag behavior, was also investigated. The drag element was placed in parallel with all the other elements (Model B, Figure 4.20.b). This elastic-perfectly plastic drag model does not allow for smooth transition curves (e.g., Figure 4.17), but corresponds closely with Model B. The advantage of using an elastic-perfectly plastic model for the drag element is to reduce the number of history variables, which at times leads to model instability. Therefore, Model C is preferred to a more complex model.

(6) Additional elements:  For dynamic analysis, it is necessary to incorporate damping. In the simplified model developed, radiation damping can be introduced by incorporating a dashpot in parallel with the elastic element, as was presented in section 4.2.5. As well, cyclic degradation of the passive soil resistance could be implemented within the plastic sub-element, for example, by using the equation proposed by Reese (1975). These concepts are not considered at this time. 

4.2.6.3 Drag model


One of the main concerns in the use of ‘gap model’ is to define the participation associated with skin friction (drag). The soil reaction against the shaft results from three phenomena: (1) passive soil resistance, (2) side shear resistance, and (3) active pressure (which counteracts the resultant). Few experimental studies of soil-shaft-interface stresses have been performed because of difficulties associated with the use of soil pressure cells. Relevant studies include those by Kasch (1977), Bierschwale (1981), Briaud (1983, 1985), and in Part I of this report. 


The participation of the skin friction depends on the soil properties as well as the shaft diameter. It is generally assumed that the average adhesion between shaft and soil is related to the undrained soil strength. According to Poulos (1980), for stiff clay, the shear friction accounts for 40 to 70% of the ultimate soil resistance. According to Smith (1986), the shear fraction resistance is believed to be a greater percentage of the total resistance at low displacement (up to 84%), and drop for larger displacements (Figure 4.22). 


The soil pressure was monitored during the cyclic test of the 6 ft (1.8 m) diameter shaft. The component associated with normal soil stress as a fraction of total soil stress applied on the shaft is presented for three depths in Figure 4.23. According to the test results, about 20% of the soil reaction force p can be attributed to normal soil stress at 3 ft (0.9 m) below ground, and this ratio does not vary significantly with load level. At 10 ft (3.1 m) and 17 ft (5.2 m) depth below ground, test results reveal that the normal stress participation was about 15% to 25% at low displacement levels (i.e., displacements less than 9 in. (229 mm)), and increases to 40 to 50% for the 18 in. (457 mm) displacement level. 



The trends at the 10 ft (3.1 m) and 17 ft (5.2 m) depths are in agreement with Smith (1986), which stated that the side friction is mobilized early in the test and provides the majority of the resistance at low displacement levels, whereas, at large displacements, the normal stresses account for an increasing fraction of p, suggesting a increase in normal stress with increasing shaft deflection. 



The results at 3 ft (0.9 m) below ground do not follow the same trends noted at 10 ft (3.1 m) and 17 ft (5.2 m) below ground. Two factors may have contributed to this finding. First, the p values at 3 ft depth were nearly elastic, with ultimate resistance exceeding that expected (and thus, the percentage associated with normal stress, although increasing, does not make up a larger percentage of the total). Another possible explanation lies in the observation that, at large displacements, chunks of concrete spalled off the column due to the high concrete compressive strains in the plastic hinge region.  The roughness of the chunks of concrete against the soil surface may have increased the force necessary to slide the shaft through the gap



In order to investigate the influence of gap and drag behavior on system behavior, three different analyses were conducted with varied drag participation. A range of drag participation was considered, with values of 20%, 50%, and 80% of the ultimate soil reaction selected. The values selected where chosen to represent a broad range, and encompass the range of values recommended (roughly 40 to 70%). 

4.3 cyclic response analyses – gap element model 

A number of analyses were conducted to assess the impact of the gap model on the behavior of the shaft/column/soil system. The results obtained with the gap model are influenced by the closure function, as well as the soil resistance assumed to result from drag. Therefore, to assess the impact of closure and drag on response predictions, three analyses were conducted with drag force of 20%, 50% and 80% of the maximum soil resistance, respectively. The parameters for the soil springs (i.e., plastic sub-element properties) were selected to match the experimentally obtained backbone p-y curves presented in section 3.2. 

Results were compared with the analytical results for the model using the experimentally derived p-y curves (without gaping), as well as the test results. It is noted that evaluation of results with a drag model at 20% is low according to Poulos (1980); however, a range of values were selected to identify the influence of the gap model on analysis results. 

4.3.1
Cyclic response analyses – 20 % Drag

Results for the 20% drag model were computed for the cyclic displacement history imposed at the top of the column during the test (Figure 3.21; Part I). Both global and local responses were evaluated to assess the merits of using the gap model. 

Global behavior

The relationships between the lateral loads imposed on top of the shaft/column versus the top shaft/column displacement are presented in Figure 4.24 for three displacement levels (16 in. (406 mm), 24 in. (610 mm), and 40 in. (1,016 mm)). The analytical result is much softer than the test result. Results for the analytical model using 20% drag force and the experimental results for the three displacement levels are summarized and compared in Table 4.4.

	Table 4.4: Gap model – 20% Drag: Summary results 

∆TOP in. 

(mm)
	16

(406)
	24

(610)
	40 

(1,016)

	FTEST kips 

(kN)
	287

(1,277)
	311

(1,383)
	315

(1,401)

	FEXP_20%drag  kips 

(kN)
	220

(979)
	257

(1,143)
	272

(1,210)

	FEXP_20%drag / FTEST 
	77 %
	83 %
	86 %


The lateral load capacity of the system obtained with the analytical model is about 20% lower than the capacity developed during the test, whereas the initial stiffness is about 40% lower than the initial stiffness developed during the cyclic test. The drag value used, equal to 20% of the ultimate soil capacity, is low for this case, as noted earlier.

Local behavior

The curvature profiles over the shaft/column height are plotted for four displacement levels (9 in. (229 mm), 16 in. (406 mm), 25 in. (635 mm) and 40 in. (1,016 mm) top shaft displacement) in Figure 4.25. According to this analytical model, the hinge forms at a depth of 10 ft (3.0 m) below ground at a top shaft/column displacement of 20 in. (508 mm). Yielding is observed over a height of 13 ft (4.0 m) (between approximately 15 ft (4.6 m) and 2 ft (0.6 m) below ground line. An estimate of the plastic hinge length was determined by equating the area associated with nonlinear curvature with an equivalent rectangular curvature distribution with magnitude equal to the peak nonlinear curvature. The hinge region extends over a height of about 9 ft (2.8 m), for a top shaft displacement of 40 in. (1,016 mm). This plastic hinge length is in very good agreement with the length suggested in ATC 32 (1996), which produces a plastic hinge length of 8.9 ft (2.7 m)

The displacement profiles over the shaft/column height are plotted on Figure 4.26. Large displacements occur at ground line (up to 8 in. (203 mm)), whereas shaft displacement becomes negligible at a depth of 22 ft (6.7 m) below ground line. 

4.3.2
Cyclic response analyses – 50% Drag

The results for 50% drag are summarized in the following sections.

Global behavior

The relationships between the lateral loads imposed on top of the shaft/column versus the top shaft/column displacement are presented in Figure 4.27 for three displacement levels (16 in. (406 mm), 24 in. (610 mm), and 40 in. (1,016 mm)). The analytical results are slightly softer than the experimental results. Results for the analytical model using 50% drag force and experimental test for the three displacement levels are summarized and compared in Table 4.5.

Table 4.5: Gap model – 50% Drag: Summary results

	∆TOP in. 

(mm)
	16

(406)
	24

(610)
	40 

(1,016)

	FTEST kips 

(kN)
	287

(1,277)
	311

(1,383)
	315

(1,401)

	FEXP_50%Drag kips 

(kN)
	258

(1,148)
	291

(1,294)
	301

(1,339)

	FEXP_50%Drag / FTEST 
	90 %
	95 %
	96 %


The lateral load capacity of the system obtained with the analytical model is 5 to 10% lower than the capacity developed during the test, whereas the initial stiffness is about 15% lower than the initial stiffness developed during the cyclic test. 

Local behavior

The curvature profiles over the shaft/column height are plotted for four displacement levels (9 in. (229 mm), 16 in. (406 mm), 25 in. (635 mm) and 40 in. (1,016 mm) top shaft displacement) in Figure 4.28. According to this analytical model, the hinge forms at a depth of 7 ft (2.1 m) below ground, at a top shaft/column displacement of 18 in. (457 mm). Yielding is observed over a height of 17 ft (5.2 m) (between approximately 15 ft (4.6 m) below ground line and 2 ft (0.6 m) above ground line, for a top shaft displacement of 40 in. (1,016 mm). The plastic hinge length is estimated to be about 11 ft (3.4 m) long, for a top shaft displacement of 40 in. (1,016 mm). The plastic hinge length is about 24% larger than the one predicted by ATC 32 (1996).

The displacement profiles over the shaft/column height are plotted on Figure 4.29, the same displacement levels mentioned previously. An increase in drag force results in stiffer system with smaller ground line displacement for the same top displacement (i.e., 7.5 in. (191 mm) for 20% drag, and 5.5 in. (140 mm) for 50% drag).

4.3.3
Cyclic response analyses – 80% Drag 

The final value used for drag, 80%, was based on a preliminary evaluation of test results at shallow depth presented in Part I. In this preliminary analysis, the percentage of resistance associated with passive soil resistance was estimated by integrating passive soil pressure results obtained with non-displacement soil pressure cells. Resistance associate with drag was determined by subtracting the passive resistance from the total resistance measured using load cells. According to the preliminary experimental results, the drag force was estimated at shallow depth to be 75 to 80% of the maximum soil resistance (Figure 4.23). 

Global behavior

The relationships between the lateral load imposed on top of the shaft/column versus the top shaft/column displacement are presented in Figure 4.30 for three displacement levels (16 in. (406 mm), 24 in. (610 mm), and 40 in. (1,016 mm)). Results for the analytical model and the test for the three displacement levels are summarized and compared in Table 4.6.

	Table 4.6: Gap model – 80% Drag: Summary results

∆TOP in. 

(mm)
	16

(406)
	24

(610)
	40 

(1,016)

	FTEST 

kips (kN)
	287

(1,277)
	311

(1,383)
	315

(1,401)

	FEXP_80%Drag 

kips (kN)
	284

(1,263)
	311

(1,383)
	323

(1,437)

	FEXP_80%Drag / Ftest 
	99 %
	100 %
	102 %


The lateral load capacity of the system obtained with the analytical model is very close to that measured during the test for all three displacement levels investigated, and the initial stiffness is about 5% lower than the initial stiffness developed during the cyclic test.

Preliminary results calculated from integration of experimental data obtained from soil pressure cells reveals that the normal pressures between the shaft and the soil account for only 20% to 30% of the total resistance near the ground surface. Results obtained with the gap element model appear to support this finding, as the analytical and experimental results for lateral load capacity, initial stiffness, displacement profiles, and curvature profiles, compare favorably for this case (80% drag). Only the slope of the unloading curve close to zero lateral load is not well represented. Additional pinching in the reinforced concrete model due to bond-slip might address this inconsistency. 

Local behavior

The curvature profiles over the shaft/column height are plotted for four displacement levels (9 in. (229 mm), 16 in. (406 mm), 25 in. (635 mm) and 40 in. (1,016 mm) top shaft displacement) in Figure 4.31. According to this analytical model, the hinge forms at a depth of 5 ft (1.5 m) below ground, and yielding extends over a height of 17 ft (5.2 m) (between approximately 15 ft (4.6 m) below ground line and 2 ft (0.6 m) above ground line, for a top shaft displacement of 40 in. (1,016 mm). The approximate hinge length is 11 ft (3.4 m) long, or 1.8 D, where D is the column diameter. The plastic hinge length is the same as the one obtained using the analytical model with 50% drag force, and 24% higher than the plastic length predicted by ATC 32 (1996).

The displacement profiles over the shaft/column height are plotted on Figure 4.32. Results are similar to those observed for the 50% drag case. 

4.3.4
results comparison – 20, 50, and 80% drag 

To assess the effect of the drag and closure effects global and local responses, analytical results are compared with experimental results at three different displacements levels: 9 in. (229 mm), 24 in. (610 mm) and 40 in. (1,016 mm).

Global behavior

Analysis results are summarized in Table 4.7 for the three drag models considered, as well as for the model without gapping. 

Table 4.7: Analysis summary - Gap models
	(TOP

in. (mm)
	FTEST

kips (kN)
	FEXP_NO_GAP

kips (kN)
	FEXP_20%Drag

kips (kN)
	FEXP_50%Drag

kips (kN)
	FEXP_80%Drag

kips (kN)

	9

(229)
	200

(890)
	219

(974)

110 % *
	152

(676)

76 %*
	186

(827)

93 % *
	210

(934)

105 %*

	24

(610)
	297

(1,321)


	340

(1,512)

114 %*
	257

(1,143)

83 %*
	291

(1,294)

95 %*
	311

(1,383)

100%*

	40

(1,016)
	307

(1,366)


	350

(1,557)

114 %*
	272

(1,210)

86 %*
	301

(1,339)

96 %*
	323

(1,437)

102 %*


* Analytical result divided by test result at displacement level considered. 

According to Table 4.7, all models produce results within 10% of the experimental results for the 9 in. (229 mm) displacement level (with the exception of 20% drag model). For larger displacement levels, the lateral load capacity for analytical models with 50% and 80% drag compare closely with experimental results. The inclusion of the gap element results in improved predictions, for both strength and stiffness, especially for a drag force equal to 80% of the ultimate soil resistance. This finding is consistent with drag forces evaluated from preliminary evaluation of soil pressure cell data at shallow depth, although, at larger depth, the drag force has been observed to decrease at large displacement. It is noted that response variations between the models with 50% and 80% drag are modest, and displacements at greater depths are relatively small; accordingly, the lower drag force at greater depths should have only a small influence on the shaft/column response). The analytical model based on using the experimental p-y curves without consideration of gap and drag behavior, overestimates the lateral load capacity by 10 to 15% and the stiffness prior to yield by 2%, whereas the model using 80% drag force overestimates the soil capacity by 2% and the initial stiffness by 3%.

It is noted that the models with 50 and 80% drag exhibit fairly similar behavior relative to the model with 20% drag. That is, for the models with 20% and 50% drag, the drag force is 2.5 times higher for the 50% drag case compared with the 20% drag case, whereas for the models with 50% and 80% drag, the drag force for the 80% case is only about 1.6 times higher than the drag for the 50% case. Therefore, according to the study on the impact of ultimate soil behavior on shaft responses presented in Chapter 2, a much higher difference in system behavior is expected between the models using 50% versus 20% drag force, versus between the models using 80% versus 50% drag force. A change in the drag force has a more pronounced impact on the initial stiffness of the system, but only a moderate influence on the capacity of the system. This finding is consistent with the findings presented in Chapter 2. 

The displacement at ground line was also evaluated for each model, since ground line displacement is more sensitive to the soil properties used in each model. Results are summarized in Table 4.8. 

Table 4.8: Ground line displacement: Summary results
	(TOP

in. (mm)
	FTEST

kips (kN)
	FEXP_NO_GAP

kips (kN)
	FEXP_20%Drag

kips (kN)
	FEXP_50%Drag

kips (kN)
	FEXP_80%Drag

kips (kN)

	9

(229)
	0.8

(20)
	0.8

(20) 

100 % *
	1.33

(34) 

180 %*
	1.0

(25) 

135 % *
	0.8

(20) 

100 %*

	24

(610)
	3.0

(76)
	1.6

(40)
53 %*
	4.4

(112) 

147 %*
	3.4

(86) 

113 %*
	2.4

(61) 

80 %*

	40

(1,016)
	4.7

(118)
	2.8
(71)

61 %*
	7.3

(185) 

157 %*
	5.4

(137) 

116 %*
	3.7

(94) 

80 %*


* Analytical result divided by test result at displacement level considered. 

From Table 4.8, it is evident that the 80% drag model produces the most consistent comparisons with the experimental results. Results with lower drag percentages tend to significantly over-predict ground line displacement, whereas the model without the gap/drag model significantly under-predicts ground line displacement. 

Local behavior

From studying the global structural response, it was found that the best results were obtained where a drag force equal to 80% of the ultimate soil resistance was assumed, which is consistent with drag forces implied from the preliminary evaluation of soil pressure cell data. However, as noted earlier, local deformations (e.g., curvature) tend to be more sensitive than global responses to changes in model parameters. In particular, the location and magnitude of the maximum inelastic curvature within the shaft is of interest. Analysis results for the location (depth below ground line) and the magnitude of the maximum curvature are summarized in Table 4.9. 

Table 4.9: Shaft/Column curvature: Summary results
	(TOP

in. (mm)
	(TEST

/in. (/mm)
	(EXP_NO_GAP

/in. (/mm)
	(EXP_20%Drag

/in. (/mm)
	(EXP_50%Drag

/in. (/mm)
	(EXP_80%Drag

/in. (/mm)

	9

(229)
	6.2 E-5

2.4 E-6


	5.3 E-5

2.1 E-5

 85 % *
	4.3 E-5

1.7 E-5

 69 %*
	4.6 E-5

1.8 E-5

 74 % *
	5.2 E-5

2.0 E-5

84 %*

	24

(610)
	2.4 E-4

9.4 E-6
	2.9 E-4

1.1 E-5

 121 %*
	1.6 E-4

6.3 E-6

 67 %*
	1.8 E-4

7.1 E-6

 75 %*
	2.6 E-4

1.0 E-5

 108%*

	40

(1,016)
	4.7 E-4

1.9 E-5
	6.5 E-4

2.6 E-5

 138 %*
	3.9 E-4

1.5 E-5

 83 %*
	3.9 E-4

1.5 E-5

 83 %*
	4.9 E-4

1.9 E-5

 104 %*

	Hinge location ft (m) bl. gd. 
	3 to 5

(0.9 to 1.5)
	3

(0.9)
	10

(3.0)
	7

(2.1)
	4

(1.2)


* Analytical result divided by test result at displacement level considered. 

The model using experimental p-y curves, without the gap model overestimates the maximum curvature, although it does reasonably capture the hinge location. At a displacement level of 40 in. (1,016 mm), the curvature magnitude is overestimated by up to 38%

Results for the model using a drag force of 20% developed less curvature and the hinge formed relatively deep (10 ft (3.0 m)) compared with the experimental results (3 to 5 ft (0.9 to 1.5 m)). The discrepancy is due to the fact that the soil model is softer. The model using 50% drag force is also less accurate at the local level than at the global level. Again, it appears that the soil model is softer than the test conditions, producing lower curvature magnitude and a deeper hinge location. 

The model using 80% drag force produces results that are most consistent with the experimental results, for both global and local responses. It is noted that, although the lateral load capacity was relatively insensitive to changes in drag from 50% to 80%, local responses are more sensitive. Curvature predictions with the 80% drag model are between 85% and 108% of experimentally derived values. The hinge location is also accurately represented. Yielding for the model extended between 15 ft (4.6 m) below ground line and ground line for the 40 in. (1,016 mm) displacement level, which is very consistent with experimental observations (between 15 ft (4.6 m) and ground line). It is also noted that the better predictions with the model for curvature (104 and 108%) occur within the inelastic range, which is significant for the prediction of the level of detailing (transverse reinforcement) required. However, the results for ground line displacement are not as well predicted. At the 9 in. (229 mm) displacement level, the analytically obtained ground displacement is slightly higher (10%) than the test result. In the test, no apparent gapping was observed at the 9 in. (229 mm) displacement level; therefore, the analytical model is softer then the test results (the analysis includes some gap behavior, which was not observed during the test at this displacement level). At larger displacements (24 in. (610 mm) and 40 in. (1,016 mm)), the displacement at ground level obtained with the analytical models is approximately 80% of the value measured during the test. 

Figure 4.33 through 4.35 compare the global and local behavior of the analytical model with 80% drag with test results. Overall, the model with the gap/drag element, with 80% drag, predicts global and local responses exceptionally well. 

4.4 SOIL SPRING BEHAVIOR 

4.4.1
Comparison of soil spring behavior for 20% and 80% drag force models

In order to better understand soil spring behavior, the cyclic response of the soil-springs at 2 ft (0.6 m) and 10 ft (3.0 m) below ground were investigated for analytical models using 20% and 80% drag force. The results are presented in Figure 4.36 through 4.39.

It can be observed that at 2 ft (0.6 m) and 10ft (3.0 m) below ground, the displacements obtained from the analytical model using 20% drag force are much larger than the values obtained from the analytical model using 80% drag force. In fact, at 10 ft (3.0 m) below ground, less than 0.8 in. (20 mm) displacement is observed with the model using 80% drag force, whereas 3 in. (76 mm) displacement is observed for the model using 20% drag force. Because the model using 20% drag force is much softer than the model using 80% drag force, larger displacements at the local level are observed. 

The model using 80% drag force exhibits similar displacement levels as measured during the test, as was already observed in Figure 4.35. At a depth of 10 ft (3.0 m) below ground, the soil springs respond within the elastic range due to the small displacement level. The drag force at this depth is not significant; therefore a model using elasto-plastic behavior (i.e, a simple model) is appropriate.

4.4.2
Spring behavior for 50% drag force model

In the previous section, the behavior of the spring was presented for both 20% and 80% drag force model. It is also of interest to determine how the various sub-elements (elastic, plastic, drag) of the model contribute. This specific study is performed for the model using 50% drag force, and is presented in Figures 4.40 and 4.41.

Figure 4.40 presents the cyclic response associated with the elastic sub-element, the plastic sub-element (frontal pressure, no drag included), and the drag sub-element. Individual contributions of the sub-elements to the total response are plotted in Figure 4.41. 

The elastic behavior and drag force are mobilized first; the plastic behavior is not mobilized until the elastic capacity is exceeded. The relations plotted in Figure 4.41 provide insight into how each of the sub-elements contributes over the applied load history. The relations plotted are consistent with the findings reported by Smith (1986), which stated that the skin friction (drag) is mobilized first.
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