CS161 Discussion 1A Examples

Here're some examples we went over during the discussions.

LISP Exercise 1 Implement the following LISP function that reverses a list L. Input '(a b c d) Output '(d c b a)

```
(defun REVERSE (L)
```

)

Exercise 2

Implement the following LISP function that deletes the kth element from the list L. Input '(a (b c) d (e f) g) 3 Output '(a (b c) d g)

```
(defun DELETE-K (L k)
```

)

Exercise 3

Implement the following LISP function that calculates the deep length of the list L. Input '((a b) c ((1 2) d)) Output 6

(defun DEEPLENGTH (L)

)

Search Formulation

Exercise 1

Please formulate the River-Boat Problem as a search problem. Please define the Initial State (IS), Final/Goal State (FS), State Space, Actions, Successor/transition functions.

Exercise 2

Please formulate the game Sudoku¹ as a search problem.

Uninformed Search

Exercise 1

Consider the following search tree. What will be the expansion order for the following uninformed search strategies? Assume left-to-right order and K is the goal state.

- BFS
- DFS
- Depth-limited Search with I=2
- DFID

Exercise 2

Let **b** := branching factor

d := depth of the optimal solution (finite)

m := max depth of the search tree (may be infinite)

I := depth limit

¹ https://en.wikipedia.org/wiki/Sudoku

For Uniform-cost Search (UCS),

e > 0 := minimal step/edge cost

C* := optimal solution cost

Please fill in the following table.

Strategy	BFS	DFS	Depth-Limit	DFID	UCS
Complete?					
Optimal?					
Time Complexity					
Space Complexity					

Exercise 3

Please draw a search tree that finds the shortest path from A to E using **UCS**.

Informed Search

Exercise 1

Please draw a search tree that calculates the shortest path from A to D using **Greedy Best-first Search**. Is it optimal?

Exercise 2

Suppose we want to calculate the shortest path from S to T in the following graph. The heuristic values for each node have been assigned according to a heuristic function h. Is h admissible? If so, please draw a search tree that finds the optimal path using A* search.

Constraint Satisfaction Problem (CSP) Exercise 1

Consider the following map coloring problem. We want to color the regions with three colors {Red, Green, Blue} such that no adjacent regions get the same color. Please formulate it as a CSP problem (variables, domains, constraints). If we want to formulate it as a search problem, what will be the State Space, Initial State, Final/Goal State, and Actions?

Exercise 2

Please draw a constraint graph for the above map coloring problem.

Exercise 3

Please run a backtrack search with

- Variable ordering: Most-constrained variable; break ties alphabetically.
- Value ordering: least-constraining value; break ties by Red > Green > Blue where > means preferable.

Exercise 4

Same as Exercise 3 except

- Variable ordering: Most-constraining variable/degree heuristic; break ties alphabetically.
- Value ordering: least-constraining value; break ties by Red > Green > Blue where > means preferable.

Exercise 5

Formulate the 4-Queens Puzzle as a CSP problem and run backtrack search to find a solution.

2-players GameExercise 1Given the following game tree, what will be the payoff for the max player?

Exercise 2

Given the following nondeterministic game tree, what will be the payoff for the max player?

Alpha-beta Pruning

Please practice alpha-beta pruning from the following link https://pascscha.ch/info2/abTreePractice/

Exercise 1

Prune the following game tree.

Exercise 2

Prune the following game tree.

Normal Forms

Fill in the table below.

Form	Universal?	Tractable (SAT)?
CNF		
DNF		
NNF		
DNNF		
Horn Clauses		

Logic

Exercise 1

Convert the knowledge base KB to CNF form.

 $\begin{array}{rl} \mathsf{KB:} & (\mathsf{A} \ \lor \ \neg \ \mathsf{B}) \ \Rightarrow \ \mathsf{C} \\ & \mathsf{C} \ \Rightarrow \ (\mathsf{D} \ \lor \ \neg \ \mathsf{E}) \\ & \mathsf{E} \ \lor \ \mathsf{D} \end{array}$

Exercise 2

Use model checking (enumeration) to show that $KB \vDash \alpha$ KB: {A, A $\lor B \Rightarrow C$ } α : C

Exercise 3

Use resolution to show that $KB \vDash \alpha$ $KB: (A \lor \neg B) \Rightarrow C$ $C \Rightarrow (D \lor \neg E)$ $E \lor D$ $\alpha: A \Rightarrow D$

Tractable Circuit Exercise

Is the following circuit decomposable, deterministic, smooth?

If so, find the number of satisfiable assignments for the circuit. If not, explain why.

CS161 Dis1A Examples (Week 6-10)

1 FOL

1.1 FOL Basics

- 1. Please interpret the following FOL sentences in English
 - $\forall x \exists y \ Loves(x, y)$
 - $\exists y \forall x \ Loves(x, y)$
 - $\exists x \forall y \ Loves(x, y)$
 - $\forall y \exists x \ Loves(x, y)$
- 2. Please translate the following English sentences into FOL
 - Richard has at least two brothers.
 - Everyone has exactly one mother.
 - You can fool some of the people all of the time.
 - You can fool all of the people some of the time.
 - Richard has exactly two brothers.

1.2 FOL Inference

- 1. What is "Definite Clause"? How is it related to the "Horn Clause"?
- 2. Consider the following KB
 - $Person(y) \wedge Eats(y, x) \implies Food(x)$
 - $Student(x) \implies Person(x)$
 - Student(Richard)
 - Eats(Richard, Apple)

Use Forward Chaining and Backward Chaining to show Food(Apple).

3. Review HW6 for unification, conversion to CNF, and Resolution.

2 Uncertainty

2.1 Probability Basics

- 1. Prove $Pr(\alpha, \beta|\gamma) = Pr(\alpha|\beta, \gamma)Pr(\beta|\gamma)$
- 2. Consider a disease,
 - 1% of people have the disease
 - 90% of people who have the disease test positive
 - 8% of people who don't have the disease also test positive

If Richard test positive, what's the probability that Richard indeed has the disease?

3. Puzzle: Monty Hall Problem.

2.2 Bayesian Network

Consider the following BN where

$$S \coloneqq \text{SAT score}$$
$$G \coloneqq \text{GPA}$$
$$A \coloneqq \text{Admission}$$
$$M \coloneqq \text{Major}$$
$$Y \coloneqq \text{Salary}$$

- 1. List all the Markov Assumptions.
- 2. How can we represent the joint distribution using CPTs?
- 3. dsep(S, Y, M)? $dsep(S, \emptyset, M)$?
- 4. Provide an example for each of the following queries:
 - Most-Probable Explanation (MPE)
 - Marginal (MAR)
 - Maximum a Posteriori (MAP)
 - Sensitivity Analysis

2.3 Encode a BN

Consider the following BN with CPTs

		Α	В	$\Theta_{B A}$	Α	С	$\Theta_{C A}$
A	Θ_A	a	b	0.2	a	с	0.9
a	0.7	a	$ \bar{b} $	0.8	a	\bar{c}	0.1
ā	0.3	ā	b	0.4	ā	с	0.5
		\bar{a}	\overline{b}	0.6	ā	\bar{c}	0.5

- 1. Encode the BN into logic sentences using indicator variables and parameter variables.
- 2. Assign weights to the literals such that WMC computes MAR.

2.4 Complexity

- 1. Difference between Tree, PolyTree, and Multiply-connected graph.
- 2. In general, what's the time complexity of BN inference?

2.5 BN Learning

Consider the following BN with a complete and incomplete dataset

id	Η	S	Е	
1	Т	F	Т	
2	Т	F	Т	
3	\mathbf{F}	Т	F	
4	F	F	Т	
5	Т	F	F	
6	F	F	F	
7	Т	F	Т	
	id 1 2 3 4 5 6 7	id H 1 T 2 T 3 F 4 F 5 T 6 F 7 T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

id	Η	\mathbf{S}	Е
1	Т	?	Т
2	Т	?	?
3	F	Т	\mathbf{F}
4	F	F	Т
5	Т	\mathbf{F}	\mathbf{F}
6	F	F	\mathbf{F}
7	Т	F	Т

- 1. For the complete dataset, what's the empirical distribution?
- 2. For the complete dataset, estimate the CPTs by counting.
- 3. For the incomplete dataset, run EM learning for two iterations assuming uniform initial CPTs. What's the learned joint distribution after two iterations?
- 4. See HW9 for Arithmetic Circuit (AC).

3 Machine Learning

3.1 Decision Tree

- 1. Is it always true that $ENT(X|Y) \leq ENT(X)$? How about $ENT(X|y) \leq ENT(X)$? When will ENT(X|Y) = ENT(X)?
- 2. Construct a decision tree for the following dataset.

id	Weather	Temperature	Play?
1	Sunny	Hot	No
2	Cloudy	Hot	Yes
3	Sunny	Mild	Yes
4	Cloudy	Mild	Yes
5	Rainy	Mild	No

3.2 Neural Networks

- 1. Why do we need activation functions?
- 2. What's the range for Logistic (sigmoid) and tanh?
- 3. Why do we want a validation set?
- 4. What's the difference between Gradient Descent and Stochastic Gradient Descent?